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Preface 

The course is based on lectures I gave, at the Humboldt University in Berlin, for undergraduate and graduate students 
with a corresponding specialization. I am dealing with optical properties of non-metallic solids emphasizing effects that 
are important for semiconductors. I am concentrating on basic phenomena of linear optics , such as absorption, 
reflection, and (spontaneous) emission. For understanding the discussions, the reader should have basic knowledges of 
solid state physics, atomic physics , and quantum mechanics. I always endeavour to make clear the connection of the 
present treatments with the principles of solid state physics.  

The lectures were running over many years, up to the end of the 90's. At this time the basic principles of most subjects 
treated here were clarified. This encouraged me to produce a written version of the course (originally in German, now 
translated into English).  

The list of references mainly gives the sources of the figures presented. Further, some textbooks and monographs are 
quoted which may be useful for supplementing the discussions given here. It should be noted that since the time of 
writing (1998) better kinds of references may have appeared. I would be grateful for receiving remarks concerning this 
matter.  

The present PDF version is intended to be used for printing. This should be done by means of a colour printer, because 
the figures cannot be understood in a black and white representation.  

In addition to this paper edition, there is an electronic version written in HTML. I especially recommend to employ the 
latter version, because there you will find a presentation similar to the procedure met in the lecture room (see the preface 
of the electronic version for details). Of course, the two editions may be utilized in parallel. For easier work with the 
paper version, references to figures, equations, earlier or later discussions e. t. c. (see the Index) are given here in the 

same form as the corresponding links in the HTML version (e. g. , Bloch state and ).  

Table of Contents  

1



page 3  

 
 
 

 
 
 
 

 
 
 

 
 
 
 

 

Overview 



page 4  

We start with a survey of our subject by looking at a schematic optical absorption spectrum of a nonmetallic solid as 
given below.  

 

This diagram presents - on a double logarithmic scale - the absorption coefficient (a quantity describing the attenuation 
of light per unit length) as a function of photon energy and light wavelength. It should be noted that the presentation 
versus photon energy is the better choice, because it gives a more direct connection to the relevant optical transitions, and 
we shall mainly use this variant in the following.  

In this section we shall give a first survey of the relevant processes, which are to be discussed in detail later, moving 
from high to low photon energies.  

At the highest energies we see a range of continuous absorption, which is related to so-called . 
These are processes in which a photon interacts with an electron in an occupied energy band (in particular, a valence 
band), transfers it to a higher non-occupied band (conduction band), and is thereby annihilated (absorbed). If we 
represent these transitions by arrows in the elementary band picture  

 

the lengths of the arrows correspond to the energies of the absorbed photons.It is obvious that we are concerned with a 
continuous spectrum, and that there is a minimum energy corresponding to the separation ( E

g
) between the lowest 

conduction band and the highest valence band. The second fact manifests itself in the appearance of a well-defined low-
energy limit of the spectrum, which is called interband absorption edge.  

At photon energies above the region shown in the spectrum (X-ray region) one typically sees transitions between core 
bands (core levels) - lying below the valence bands - and the conduction bands.  

In the low-energy part of the interband edge we observe, at sufficienly low temperatures, sharp lines which are due to so-

called . Physically, we are dealing with the following process: In the case of interband transitions just 
discussed, an electron in a conduction band and a hole (defect electron) in a valence band (or a deeper band) are formed. 
These particles represent a negative and a positive charge, respectively, and are therefore subject to Coulomb attraction 
which may lead to a mutual binding of the two particles. Such bound states, referred to as excitons, can be visualized  
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as electron and hole rotating around a common center of gravity and, at the same time, performing a translational motion 
through the solid.  

 

The lines appearing in the spectrum are related to the generation of excitons from a particle-free state due to the 
absorption of photons.The corresponding photon energies are somewhat lower than E

g
, differing from E

g
 by the small 

binding energy (dissociation energy) of the two particles. So the lines are located at the lower limit of the interband 
range.  

Proceeding to lower photon energies, we come to a spectral range in which generally no significant absorption is 
observed. Looking more carefully, weak absorption can be seen which is mainly due to 

. More precisely, we are dealing with transitions beginning or ending on discrete 
levels in the gap between conduction and valence bands created by impurities. Examples are illustrated in the following:  

 

These processes can give rise to sharp lines or, alternatively, broad bands, the corresponding photon energies being 
obviously, in general, smaller than E

g
. The strength of this contribution to the spectrum depends on the concentration of 

the impurities, e.g. absorption coefficients of typically about 1 to 10 cm-1 are to be expected for concentrations of 1016 

active centers per cm3.These values are by many orders of magnitude smaller than the contributions of interband and 
exciton transitions.  

In the present lecture we shall not deal with impurity transitions.  

Going further toward lower photon energies, i. e. to the middle and far infrared, we again find absorption regions of 

relatively high intensity. These are due to . The occurrence of these bands can be most simply 
explained in the case of materials consisting of several different types of atoms. In such materials the atoms ("ions") have 
positive and negative excess charges. (The intensity of the phonon bands shown in the Figure refers to this case.)  

As illustrated in the following, the electric field of an incident electromagnetic wave (wavelength not drawn to scale) 
interacts with the charges, diverting positive and negative ions in opposite directions.  

 

That means that - for a suitable magnitude of light frequency - the ions are excited to vibrations, whereby the light wave 
is (partly) absorbed. In the quantum physical particle-picture these processe are described as a transformation of photons 
into phonons.  

In the infrared region one can also often detect so-called . These are processes in which an electron 
in a conduction band or a hole in a valence band receive energy by absorbing a photon.  
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For the first case such a transition is shown above. Obviously such processes can only occur if there are actually 
electrons in the conduction band.It is well known that this requires, under normal conditions, the presence of suitable 
thermally ionized impurities (shallow donors; and not too low temperatures). Because the initial and final states have 
continuous distributions, the absorption spectrum also has continuous character. As shown by more detailed 
investigations, the absorption coefficient increases with decreasing photon energy.  

The spectrum of intraband transitions is, in general, located in a range in which there are also phonon transitions. 
Consequently, this spectrum can be observed in pure form only outside the bands due to phonons.  

It should be noted that in the case of metals, where the concentration of conduction electrons is extremely high, the 
intraband contribution is very large, governing the optical spectra together with the interband contribution.  

Here we conclude our survey of the optical transitions. We shall see that processes of the kind discussed, as well as 
similar processes also manifest themselves in other types of optical spectra (e. g. reflection and luminescence spectra). In 
the following - after shortly compiling some basic concepts of solid state physics - the mentioned processes will be dealt 
with in detail.  
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In this chapter we repeat some basic concepts of theoretical solid-state physics. We think that this will enable many 
readers to get into our subject, without referring to corresponding textbooks. Our discussion is divided into four 
complexes:   

� Crystal Structure  

� Bloch States and Brillouin Zones  

� Energy Band Structure  

� Density of States  

1.1 Crystal Structure 

As our discussion will refer to crystalline solids we start with some crystallographic concepts.  

An (ideal) crystal is characterized by the periodic configuration of atoms, as illustrated in   

 
for two constituting types of atoms, using a schematic two-dimensional picture. 

Due to the periodic arrangement of the atoms, there are so-called equivalent points in the crystal. These are points from 
which an observer (located sufficiently far from the crystal surface) sees the same environment. In Fig. 1.1 two points of 

that kind are marked by +. Vectors connecting equivalent points are called lattice vectors (example in Fig. 1.1:  ). A 
shift by a lattice vector transforms the crystal into itself (excluding regions near the surface). This property is called 
translation symmetry.  

The lattice vectors of minimum length (typically some 10-8 cm) are referred to as primitive lattice vectors . In  

we characterize these by red arrows .  

In a three-dimensional crystal we are dealing with three primitive lattice vectors, which we shall designate as a1, a2 and 

a3. From these one can construct each general lattice vector(Rn) by forming linear combinations with integers (n1,n2,n3) 

as coefficients:  

(1.1)     Rn = n1a1 + n2a2 + n3a3 

 

Here n stands for n1,n2,n3. The points generated by the vectors Rn are referred to as the lattice. 

 

The primitive lattice vectors span the unit cells. In  we represent such a cell by . The unit cells are the 
smallest elements which can be thought of to build the crystal. In general there are several possibilities for defining the 
unit cell for a given crystal structure.  

For discussing the electronic and vibrational states of crystals the concept of reciprocal lattice is required. The best way 
to introduce the reciprocal lattice is by means of corresponding primitive vectors:  

(1.2)     b1 = ( 2π / V0 ) (a2 × a3 ),      b2 = ( 2π / V0 ) (a3 × a1 ),      b3 = ( 2π / V0 ) (a1 × a2 ) 

 

V0 is the volume of the unit cell; ( ai × aj ) are vector products. 

 

The general vectors of the reciprocal lattice are defined in a way analogous to the lattice vectors introduced earlier:  

(1.3)     Gm = m1b1 + m2b2 + m3b3 

 

m1,m2,m3 are integers; m is an abbreviation of this triple. 
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1.2 Bloch States and Brillouin Zones 

After these remarks on crystallography we go into the physical discussion. First we shall deal with the quantum 
mechanical states of electrons in a crystal. The Hamilton operator of an electron has the form  

(1.4)     H = p2 / 2m0 + U(r) 

 

Here p and r are the momentum and position vector,respectively, of the electron (operators), m
0
 its rest mass. The two 

terms in H are the kinetic and potential energy of the      electron. U(r) (shortly referred to as potential in the following) 
includes electronic contributions and contributions of the atomic nuclei.  

We are interested in the solution of the corresponding Schrödinger equation  

(1.5)     Hψ = Eψ  

(E, ψ energy eigenvalues and eigenstates, respectively).  

The application of Equ. (1.4) and (1.5) implies using the so-called one-electron approximation.  

Strictly speaking, in the case of a solid one is concerned with an extreme example of a many-electron problem: In a 

macroscopic crystal the are, to order of magnitude, 1022 to 1023 electrons. In our approximation, the effect of the other 
electrons in the crystal is described as a contribution to the potential U(r). This means that, simply speaking, only the time-
averaged positions of the other electrons are taken into account. In most cases, results of calculations based on the one-
electron approximation agree surprisingly well with experiment.  

The fact that the potential is invariant with respect to a shift by lattice vectors Rn, 

 

(1.6)     U(r + Rn) = U(r) 

 

has important consequences ( see Equ. (1.1))(translation symmetry, lattice periodicity). Equ. (1.6) means that at 
equivalent points (+ in Fig. 1.1) the electron feels the same potential, which is evident from the identity of the 
surrounding atomic configurations.  

This property is conveyed to the total Hamilton operator:  

(1.7)     H(r + Rn) = H(r) 

 

From Equ. (1.7) it follows, by simple considerations, that the wavefunctions ψ(r) have the form of Bloch functions 
(Bloch states, Bloch waves):  

(1.8)     ψ
kν

 (r) = exp(ikr) u
kν

(r) 

 

k and ν are referred to as propagation vector and band index, respectively. u
kν

 (r) is the so-called Bloch factor,which 

has lattice periodicity:  

(1.9)     u
kν

(r + Rn) = u
kν

(r) 

 

Of course the energy eigenvalues E also depend on the quantities k and ν. The notation is  

     E = E
ν
(k) 

 

If k is varied at a given ν, E
ν
(k) will cover a certain range: We are concerned with a band type energy spectrum. The 

bands are numbered by the index ν.  

On the one hand,the Bloch states ψ
k ν

(r) (see Equ. (1.8)) have wave character (wavelength 2π / |k|), due to the factor exp

(ikr); on the other hand, in the vicinity of the atomic cores, they are similar to (strongly oscillating) atomic states, due to 

the effect of the Bloch factors u
kν 

(r). We visualize this (after[1]) in .  
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Here the relevant functions (real parts) are plotted along a straight line passing a series of atoms of the same kind. Fig.1.2 
shows that the motion of electrons in the crystal does not have much similarity with the motion of free particles 
(described by plane waves in quantum mechanics): the strong forces produced by the atoms have dramatic effects on the 
behaviour of the electrons in the atomic regions.  

The dependence of the solutions on the (three-dimensional) vector k ist is periodic with respect to the reciprocal lattice 
vectors G (the index m has been omitted):  

     ψ
k + G,ν

(r) = ψ
kν

 (r) 

 

     E
ν
(k +G) = E

ν
(k) 

 

Note that both the vectors k and G (see the definitions (1.2) and (1.3)) have the dimension of a reciprocal length .  

Due to this fact one can restrict oneself to a small part of k space (i. e. a kind of unit cell of the reciprocal lattice) when 
discussing k dependences. This "unit cell"is chosen symmetrically around the point k = 0 and is referred to as (first) 

Brillouin zone.  shows the Brillouin zone for the face-centered cubic (fcc) lattice (lattice for important crystal 
structures, e. g. diamond, zincblende, and rock-salt structure).  

 

The relevant points of the reciprocal lattice (body centered cubic (bcc) in the present case) are marked by �. The point 

denoted by Γ corresponds to k = 0. Here the Brillouin zone (represented by red lines) is a truncated octahedron. This 
form of the Brillouin zone results from the following general principle:  

Draw straight lines from the point k = 0 to all other reciprocal lattice points, and, in the centers of these pieces of lines, 
put up planes which are perpendicular to the line. The Brillouin zone is the smallest volume that is limited by such planes 
and contains k= 0 .  

Obviously, the Brillouin zone in Fig. 1.3 is formed by two types of planes: the hexagons result from halving the lines to 
the cube corners, the squares come from the lines connecting k = 0 with the centers of the adjacent cubes.  

1.3 Energy Band Structure 

The set of functions E
ν
(k) for a given crystalline solid is referred to as energy band structure. This is one of the most 

important characteristics of the material. The energy band structure determines all properties based on electronic 
processes. According to our earlier remarks, we can restrict ourselves to the Brillouin zone in discussing the E

ν
(k). 

Usually one considers the variation along certain straight lines in this zone. Fig. 1.4 shows a corresponding part of the 

band structure of GaAs [2]. (In this plot there are, altogether, nine bands; so the index ν assumes nine different values.) 
Since GaAs crystallizes in the zincblende structure, the Brillouin zone has the form just represented in Fig. 1.3. This zone 
is once more shown in Fig. 1.4, together with the lines (in violet) chosen for the E

ν
(k) plots.  
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The symbols Li, Γi and Xi characterize the symmetry properties of the Bloch states in the corresponding points of k 

space. The band structure in Fig. 1.4 is based on a combination of experimental and theoretical results (see section 2.5 for 
details on how such information is gained).  

  

The part of the band structure shown in Fig. 1.4 includes the lowest conduction bands and the highest valence bands. 
Disregarding effects of impurities and of temperature one can state that the valence bands (and all deeper bands) are 
completely occupied with electrons, and all conduction bands are empty. In the case of GaAs there is an energy gap 
(forbidden zone, E

g
 in Fig. 1.4) between the lowest conduction band and the highest valence band. The Eg value of GaAs 

is about 1. 4 eV at room temperature and increases to somewhat above 1.5 eV on cooling to very low temperatures (see 
also Chapter 5). Obviously Fig. 1.4 specifies the well-known simple band picture in which only the limits of conduction 
and valence bands and the band gap are shown (see the pictures in the Overview Chapter).  

A more detailed discussion of the occupation of energy bands with electrons is given in .  

The band structure of GaAs shown in Fig. 1.4 has two features also found for many other materials:  

� The maximum of the valence bands lies at the point Γ (k = 0). At this point two valence bands (Γ8) are in contact, 

and a third band (Γ
7
) closely approaches these two.  

� The conduction band minimum is also located at k = 0.  

The second property is found less frequently than the first one. (If both properties are present one is concerned with a so-
called direct band structure, see Section 2.2.)  

For describing the behaviour of electrons near the edges of conduction and valence bands one often uses the "effective 
mass" concept. The simplest way of introducing this concept is expanding E

ν
(k) into a Taylor series around the 

corresponding extremal point. For the lowest conduction band (ν = c) this yields, in the case of Fig. 1.4:  

  

Here ki are the components of k in a Cartesian coordinate system. This is chosen in such a way that second-order terms 

of the type k
i
k

j
 (i different from j) do not occur, which can always be achieved by transformation to principal axes. There 

are no terms linear in k since the expansion is around the minimum. If we restrict ourselves to a small environment of k 
= 0, all terms of higher than second order can be neglected. Introducing new quantities mc (i)* through the equations  
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we get  

  

The mc (i)* have the dimension of masses; they are called effective masses. Apart from a possible i-dependence, i. e. a 

possible anisotropy, Equ. (1.12) corresponds to the k dependence of the energy of free particles (with k = (1 / h)
×momentum of the particles).  

Equ. (1.12) is the basis for describing the motion of electrons near the band edge as the motion of quasi-free particles, 
where only the real electronic mass is replaced by the effective mass (e. g. in discussions of electric conductivity). This 
description is justified as long as one restricts oneself to the range where Equ.(1.12) is valid, i. e. to a sufficiently small 
range near the band edge. As already mentioned in connection with Fig. 1.2 the motion of electrons in a solid is, in 
general, not very similar to a free-particle motion; this also manifests itself in the fact that the overall appearance of the 
E

ν
(k) functions is rather complicated (Fig. 1.4).  

In the GaAs case all three effective masses of the conduction band edge have the same value; this is a consequence of the 
cubic crystal-symmetry. One has  

     m
c (1)

* = m
c (2)

* = m
c (3)

* = 0.067 m
0
. 

 

The magnitudes of the (negative) valence band masses are much larger, as is also the case for many other materials 
(typically some tenths of m0); here the situation is more complex due to the contact of two bands.  

1.4 Density of States 

A concept often used in solid state physics is density of states, more pricisely: density of states with respect to energy . 

To arrive at a definition, we first introduce an independent energy variable E and denote by g ( E ) dE the number of 

electronic states (band states) lying in the infinitesimal interval between E and E + dE. g ( E ) is the density of states. For 
GaAs we plot this function in Fig. 1.5 [2] together with the E

ν
(k) diagram discussed in the last section , with coincident 

energy scales:  

  

The g ( E ) curve is obviously correlated with the E
ν
(k) curve. There is the following connection between the two 

functions:  
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Here g ( E ) and g
ν
 ( E ) are related to unit volume. Integration is over surfaces of constant energy in k space. For a given 

energy ( E ) and a given band (ν) these are defined by the relation  

(1.14)     E
ν
(k) = E 

 

dσ is the surface element. Contributions to the sum in Equ. (1.13) are made by all bands containing the energy E, i. e. for 
which there is a k range in which Equ. (1.14) is fulfilled. Of course, such a band does not occur in the energy gaps, so the 
density of states is zero there (two such ranges can be seen in Fig. 1.5).  

According to Equ. (1.13) g ( E ) is large (small) at given E if for the bands in question | grad
k
E

ν (k)| has small (large) 

values. This correlation is due to the fact that in the case of flat (steep) E
ν
(k) dependences there are many (few) states in 

a given interval d E (note the equidistance of the possible k values ). In particular, the sharp peaks in g ( E ) correspond to 
extrema of the E

ν (k) curves (Fig. 1.5).  
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2.1 Elementary Processes 

Now we ask what are the conditions for an electron making a transition, under the influence of a radiation field, from a 

Bloch state in a band ν into a (nonoccupied) Bloch state in another band ν ' (a process manifesting itself, e. g., in the 
optical absorption spectrum):  

(2.1)     ψ
kν (r) →→→→ ψ

k'ν '
 (r) 

Let us illustrate this question using .  

  
In this Figure we only represent the highest valence band (v, completely occupied with electrons) and the lowest 
conduction band (c). ( The extrema are assumed to lie at k = 0, compare Section 1.3). 

It is found that there are, generally, limitations for processes of type (2.1), i. e. selection rules. In the following we 
outline a way of proving that rule:  

Let us describe the effect of an electromagnetic plane wave of frequency ω on the electron by means of the interaction 
operator [13]  

(2.2)     W = - ( e / m0 c ) A p,   A = A0 e i ( s r - ω t )

Here A is the vector potential, A0 its amplitude, s the propagation vector of the light wave, and t the time. Combining all 

the t-independent factors in W:  

(2.3)     W = W
0
 e - i ω t ,   W

0
 = - ( e / m

0
 c ) A0

 e i s r p

we obtain for the probability P of the transition (2.1), by specializing the corresponding general expression (" golden rule 
of quantum mechanics ")  

(2.4)     P = ( 2 π / h) |< k'ν ' |W0| k ν> |2 δ ( Eν ' (k') - Eν (k) - hω ) 

So, as usual, we are dealing essentially with a product of the squared matrix element of the interaction, taken between the 

final and initial states, and a δ - function with energy quantities in its argument.  

By discussing the matrix element, one gets, making use of translation symmetry, that this is nonzero only under the 
restrictive condition  

(2.5)     k' = k + s  

( k-selection rule ).  

Arguments leading to this fundamental relation are given in .  

Moreover, P is different from zero only if the argument of the δ function vanishes, i. e. if  

(2.6)     Eν '(k') = Eν(k) + hω
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We can interpret Equ. (2.5) and (2.6) using the photon picture for the radiation: First we note that in Equ. (2.5) after 
multiplication with h, we are concerned with quantities having the dimensions of momenta. That means that we can 
regard the optical transition as a collision of a photon with the electron, in which the photon disappears (is absorbed), its 

momentum hs and energy hω being transferred to the electron. Here the right- and left-hand sides of the two equations 
refer to the situation before and after the collision, respectively.  

This is a generalization of the classical collision concept,including the generation and annihilation of particles. Later we shall 
be often dealing with processes of that kind, especially processes with the participation of phonons. 

It should be noted that the quantities hk and hk' are, strictly speaking, not momenta of the electron. An electron in a Bloch 
state generally does not have a well-defined momentum in the sense of quantum mechanics (this is only the case for free 
particles, whose states are described by plane waves, see the comments related to Fig. 1.2). Those quantities should be 
referred to correctly as quasi-momenta; however, we shall, as is usual, simply be speaking of momenta. 

For discussing transitions at not too high photon energies (infrared, visible, and ultraviolet ranges) Equ. (2.5) can be 
further simplified, due to the fact that here the magnitude of s is much smaller than that of k and k'. Denoting the light 

wavelength by λ, we have in those spectral ranges, to order of magnitude,  

     |s| = 2 π / λ = 103..... 106 cm-1. 

We compare this with the size of the Brillouin zone, which is of the order 108 cm-1 (see the magnitude of the reciprocal 
lattice vectors taking into account the definition of the primitive lattice vectors). Thus the changes due to s can be safely 
ignored. Consequently, the simplified k selection rule is  

(2.7)     k' = k  

and the modified energy balance  

(2.8)     Eν'(k) = Eν(k) + hω. 

Now we can answer our question of Fig. 2.1, see :  

  

As a consequence of Equ. (2.7) and ( 2.8 ) the allowed interband transitions are to be represented in Eν(k) diagrams by 

vertical arrows of length hω.  

The conditions (2.7) und (2.8) also refer to transitions  from a higher(ν ') into a lower (ν) band, as is evident from the 
derivation . Such transitions ("downward transitions") can be observed in the luminescence spectrum, provided that - 
after supplying energy from outside - there are electrons in a conduction band and free places in a valence band (Fig. 2.2) 
at the same k-vectors. In this way transitions are made possible accompanied by the emission of photons with energies 

hω corresponding to Equ. (2.8). Such processes will be discussed in detail in Section 2.2.  

The approximation (2.7) corresponds to the dipole approximation familiar from atomic physics. In both cases s is 
neglected, thus ignoring the spatial variation of the radiation field over the relevant range (atom, unit cell).  

2.2 Transitions at Photon Energies Near E
g
:

      Direct Band Structures 
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After these introductory remarks of mainly theoretical character, we shall now discuss the influence of the processes on 
experimental quantities, i. e. optical spectra. Usually we make a comparison with experiment by first considering what 
kind of spectra are to be expected from our previous theoretical analysis, and then discuss the reasons for possibl 
deviations.  

Generally we are interested in manifestations of upward transitions (observable, e. g., in absorption spectra) and 

downward transitions (frequently visible in luminescence spectra). In the present section we shall deal wih these two 
types of spectra for photon energies close to Eg, and shall add, in each case, some remarks concerning simple 

experimental principles (see also Appendix 1).  

In this section we refer to the spectra of so-called direct materials i. e. of substances for which the extrema of conduction 
band and valence band - as we have assumed in Fig. 2.1 and Fig. 2.2 - lie at the same k - vector. Later (in Section 2.3) we 
deal with the peculiarities found for indirect materials, in which the extrema are displaced relative to each other in k - 
space.  

Absorption Spectrum

The simplest way to determine absorption spectra is by a combination of transmission and reflection measurements; see 

:  

  

For each frequency ωωωω to which the monochromator is tuned one measures the intensities transmitted and reflected by the 

sample I
T
(ωωωω) and I

R
(ωωωω), respectively, and, in addition, by a "blank experiment", the incident intensity I

0
(ωωωω). Then one 

has, in simple cases (e. g. cubic symmetry, no interference effects)  

(2.9)     T(ω) = ( 1 - R(ω) )2 e-α (ω)d

T(ω) = I
T
(ω) / I0(ω) and R(ω) = I

R
(ω) / I0(ω) are referred to as transmittivity and reflectivity, respectively; d is the 

sample thickness, α is the absorption coefficient (dimension cm-1), describing the attenuation of light per unit length. 

α(ω) is the dependence of interest to us, which can be obtained from the measured functions I
T
(ω), I

R
(ω) and I

0
(ω) by 

correspondingly resolving Equ. (2.9).  

  

From Fig. 2.2 we expect that α (ω) qualitatively looks like the dependence shown in , i. e. α should be zero for 
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hω < Eg and steeply rise for hω > Eg ( interband absorption edge). Roughly speaking, this expected behaviour is 

confirmed by experiment.  

However, the exact shape of the the interband edge calculated on the basis of Section 2.1 generally does not agree very 
well with the measurements, mainly due to neglecting exciton effects. Exciton effects often give rise to the appearance of 
absorption lines in the lower part of the edge (see the Overview Chapter and the detailed discussion in Chapter 5).  

Further modifications arise from the electron-phonon interaction, which has also been ignored in the previous analysis.  

The discrepancies produced by those effects are much less pronounced at photon energies far above Eg, and usually can 

be disregarded in that range (Section 2.4).  

Luminescence Spectrum

Radiative downward transitions are observed in luminescence spectra (called sometimes emission spectra or,rarely, 
fluorescence spectra). For the observation of luminescence some external supply of energy is required. Depending on the 
type of energy supply ("excitation"), one can distinguish photo-, cathodo-, electroluminescence e. t. c. First we deal here 
only with photoluminescence, where excitation is by optical irradiation.The principle of an experimental arrangement is 

shown in .  

  

Generally, the excitation leads to the emission of a whole spectrum of photon energies (total intensity I
Etot 

). Spectral 

decomposition is performed by passing through the monochromator (emerging intensities I
E

(ωωωω)). The photon energy 

hωωωω
L

 of the laser used for excitation is chosen larger than Eg in our case. We represent the relevant processes in the band 

structure diagram employed so far (see Fig. 2.2) in .  

  

In the absorption process of the laser photons (hω
L), which is, of course, subject to the k-selection rule, electrons are 

transferred from the valence to the conduction band. Since thereby holes (defect electrons) are produced in the valence 
band, this process is referred to as the generation of electron-hole pairs. Due to the high intensity of the laser radiation, 

the electron-hole pair generation rate is very large; we illustrate this by drawing a broad arrow .  

What is of interest to us and can be observed in experiment, is the radiative recombination  of electrons in the 
conduction band with holes in the valence band. However, before this process can occur to a significant degree, the two 

kinds of particles undergo relaxation (____) within the corresponding bands: By emitting phonons, i. e. in a nonradiative 

way, the electrons very rapidly (typically in 10-12 to 10-11 s) transfer energy to the crystal, thereby coming close to the 
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conduction band minimum. This process consists of many small steps. (Phonon energies usually are about some 10 meV, 
see Section 7.3.) Through analogous processes, the holes assemble near the valence band maximum. (Note that the 
upward motion of the holes actually involves a downward motion of the valence band electrons; consequently, one is 
dealing with a decrease of the energy of the electron system also in this respect.)  

The probability of the radiative recombination transitions - which can occur only if the conduction band electron and the 
unoccupied valence band state are at the same k-vector - is relatively low compared with the relaxation probability 

(typical times larger than 10-9 s). This is why the recombination practically takes place after the relaxation, and starts 
from the band edges.  

Consequently, we expect that the intensity spectrum I
E

(ωωωω) of the radiative electron-hole-pair recombination looks as 

shown in .  

That means we should be concerned with an emission band, whose low-energy limit (as that of the absorption spectrum 

α(ω) reproduced from Fig. 2.4) is located at Eg, and which, due to the narrow energetic spread of the two kinds of 

particles before recombination,does not extend much to high photon energies.  

Since the relaxation processes are fast, an equilibrium distribution similar to a Boltzmann distribution is established. 
Thus the emission bandwidth should be some k

B
T

EHP
, where k

B
 is the Boltzmann constant and T

EHP
 an effective 

temperature of the electron-hole-pair system. Frequently T
EHP

 is somewhat higher than the crystal temperature (as 

measured with a thermometer) which is determined by the phonon system (Section 7.3).  

At any rate, the luminescence spectrum should extend less far to higher energies than the absorption spectrum, whose 
extension is determined by the width and location of the energy bands involved (Section 2.4).  

  

Experimental studies of the bands due to electron-hole-pair recombination are generally difficult,because the 
luminescence spectra at the low temperatures of interest are usually dominated by exciton effects (Section 5.4). 
Favourable conditions for observing such bands exist for materials for which those effects are weakly pronounced. As an 

example we show in  a luminescence spectrum of InSb in the relevant range [4]. This material has extreme 
properties in that respect (Section 5.5). The Eg value, which is about 227 meV is indicated. The band does not extend 

much to high energies, as we expect (halfwidth about 11 meV). The low plateau preceding the band at small energies is 
attributed to recombination processes in which a phonon is emitted in addition to the photon.  

2.3 Transitions at Photon Energies Near E
g
:

      Indirect Band Structures  

The previous discussion of optical spectra referred to the case in which the extrema of conduction and valence band lie at 
k = 0 (Fig. 2.2). The results are valid for all materials with direct band structure, i. e. including cases where the two 
extrema are not located at k = 0, but both at the same point in the Brillouin zone. 
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However, there are several substances for which the extrema are displaced relative to each other (substances with 

indirect band structure). Due to this fact their optical behaviour is different in some respect. This group of materials 
includes several important semiconductors, such as Si, Ge, and GaP. In these semiconductors the highest valence band 
maximum is still at k = 0, while the conduction band possesses, in addition to the k = 0 minimum, some deeper minima 

at different k vectors. In  we illustrate this situation. We shall refer to this Figure in the following.  

Here we show the Eν(k) dependence along a straight line in the Brillouin zone, passing through k = 0 and two of the 

other conduction band minima. All minima excluding that at k = 0 have the same depth and are situated symmetrically 
(in a star-shaped manner) in the Brillouin zone. For GaP there are, e. g., six minima of that kind. These are located close 
to the centers of the boundary squares, i. e. close to the X points ( Fig. 1.3).  

Let us first consider the spectrum of upward transitions (absorption spectrum). On the basis of the k selection rule ( Equ. 

(2.7)) we expect that only vertical transitions can occur (  ), so that the low-energy limit of the absorption spectrum 
would be given by the smallest vertical distance between conduction and valence band Eg'( see Fig.2.4 ;replacing Eg by 

Eg'). According to our present knowledge, interband transitions should not be possible below Eg', although photon 

energies larger than the minimum band separation E
g
 would be sufficient for these processes. Such transitions, which are 

originally forbidden, would correspond to the oblique arrows in Fig. 2.8 . Nevertheless, this type of transitions 
do occur, although with comparatively small probability. As discussed in the following, these processes take place with 
the participation of phonons, which provide the changes in momentum necessary in the case of the oblique transitions.  

As dealt with in more detail in Chapter 7, phonons are characterized by  

� a propagation vector q, which is restricted to the Brillouin zone, or a quasi-momentum hq (analogous to the 

electronic quantities k or hk, respectively),  

� a band index j (analogous to the electronic band index ν) and  

� the energy hωj(q) (analogous to Eν(k)).

More details for the semiconductors which are of interest in our case are presented in .  

For the interband transitions to be discussed it is important that electrons and phonons interact with each other. The 
elementary processes of this interaction can be described, in simple cases, in terms of collisions between electrons and 
phonons. Since we can regard the "normal" interband transitions as collisions between a photon and an electron (Section 
2.1), the processes dealt with here may be considered as three-particle collisions between a photon, an electron, and a 
phonon . (In these processes photon and phonon only interact with the electron, not with each other.)  

To begin with, we write - with some rearrangement of terms - the momentum balance, Equ. (2.5) and the energy balance, 

Equ. (2.6) for the simple electron-photon collision, specializing to the relevant bands ν = v and ν' = c and putting again s
= 0:  

(2.10)     k' - k = 0  

(2.11)     Ec(k') - Ev(k) = hω

To describe the three-particle collision we add the contributions to momentum and energy, of the collision partner 
phonon:  

(2.12)     k' - k + q = 0 
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(2.13)     Ec(k') - Ev(k) + hωj(q) = hω

Here we have to distinguish, with respect to the phonons, two types of processes, i. e. processes involving the generation 
(emission, + sign) and processes involving the annihilation ( absorption, - sign) of a phonon. So, in the case of Equ. 
(2.12) and (2.13) we are concerned, as a whole, with processes in which the electron absorbs a photon and 
simultaneously emits or absorbs a phonon. Here it should be noted that the phonon energies (typically some 10 meV) are 
always much smaller than the photon energies (between some tenths of an eV and some eV, corresponding to the 
separations of conduction and valence band).  

Consequently, transitions of electrons between the displaced extrema in Fig. 2.8 ( ) are enabled by the fact that 
the collision partner phonon can supply the difference k'- k of the displaced extrema of the electronic propagation 

vectors: The electrons interact with phonons from the whole Brillouin zone, in particular with those whose q-vector is 
similar to the separation of the band extrema.  

Such processes, represented by oblique arrows, are referred to as indirect transitions; the processes due to pure electron-
photon interaction, represented by vertical arrows, are called, in this connection, direct transitions. The terms direct / 
indirect are also used to characterize materials with coincident and displaced band extrema, respectively, since the two 
kinds of transitions determine the low-energy limit of the interband spectrum. In an analogous manner, one distinguishes 
direct and indirect energy band structures.  

Using Equ. (2.12) and (2.13) the qualitative shape of the absorption spectrum at photon energies in the vicinity of Eg can 

be established for indirect band structures (Fig. 2.8). In order to find this, we specialize to transitions exactly between 
two extreme points, putting k = 0 and k' = km

. Thus q = +km
 is obtained from Equ.(2.12). Inserting this into Equ. (2.13) 

and considering that the phonon energies are even functions of q (see also Chapter 7) we get  

(2.14)     Ec(km) - Ev(0) + hω
j(km) = Eg + hω

j (km) = hω

From this equation we can find the photon energies hω at which transitions between the specified elctronic states can 
occur: We are dealing with processes for which the change of the electronic state is accompanied by the emission or 

absorption of type j phonons with propagation vectors q = +km
 and energy hω

j
(km

). Assuming for simplicity that there 

are only two important types of phonons (e. g. LA und LO) we obtain four hω-values lying symmetrically around Eg. 

These are indicated in  by markings (  ) on the energy axis.  

  

Taking also into account the electronic transitions that connect k-and k'-vectors outside the extrema, each of the 
markings becomes a continuum which begins at the marking and extends to high energies. Superposition results in a 

spectrum with step-like structure (_____); above E
g
' this merges with the steeply rising spectrum of direct transitions. 

(Strictly speaking, exciton effects are important for the appearance of pronounced steps.)  

The low intensity of the contribution of indirect transitions compared with that of direct transitions is a consequence of 
the smaller transition probability ("three-particle collisions are less probable than two-particle collisions").  

The α-values in the range of the indirect transitions are temperature-dependent: On cooling there is a strong decrease in 

the range hω < E
g
 and a weak decrease in the range hω > E

g
. This is due to the fact that we are concerned with processes 

including phonon absorption in the low-energy part, and mainly processes including phonon emission in the high-energy 
part ( Equ. (2.14), Fig. 2.9). The probability of the former processes is proportional to the number of phonons offered, i. 
e. phonons available, and therefore tends to zero when the temperature approaches absolute zero. As a matter of fact, the 
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probability of processes with phonon emission also somewhat depends on the number of phonons available (contribution 
of stimulated emission of phonons), but the cooling-induced decrease due to this effect is relatively small. This different 
temperature dependence can be used for identifying the step-shaped structure for unknown materials.  

As an example, we now have a look, in , at an experimental absorption spectrum in the range of indirect 
transitions; this refers to GaP [5].  

  

Here we show α1/2 (cm-1/2) plotted versus hω (eV) in the range of transitions with phonon emission for two temperatures. 

(It comes out from a theoretical treatment not reproduced here that the α1/2 representation is especially favourable.) We 
see the step-shaped structure to be expected. As the temperature decreases, there is an overall shift to higher energies but 
essentially no change in the band shape. The shift is due to a temperature dependence of E

g
, whose origin will not be 

discussed here either. The types of phonons responsible for the individual steps (TA, LA, ...) are indicated, LO- and TO-
phonons being not resolvable. The structure at the highest energy, characterized by LO + TA (not clearly visible on the 
scale employed) is based on a combination of LO- und TA-phonons. We are dealing here with processes that are 
described, instead of Equ. (2.14), by an Equ. with two phonon energies on the left-hand side (and thus can be declared as 
four-particle collisions, obviously having relatively high probability in this special case).  

We finish this Section with some remarks concerning the radiative recombination of electron-hole pairs for indirect band 

structures. We again consider the case of photoluminescence (Fig. 2.5). Referring to  we represent the relevant 
processes in our Eν(k) diagram (compare Fig. 2.8).  

The electrons in the conduction band and holes in the valence band generated by the laser photons (  ) are subject, as 
the particles in earlier cases, to relaxation, accumulating in the deepest conduction band minima and highest valence 
band maximum, respectively, before recombining. Consequently, the radiative recombination also can only occur 
through indirect (oblique) transitions  i. e. with the participation of phonons (essentially the same types of 
phonons as in the case of the upward processes).  

  

Thus we are again dealing with three-particle collisions photon - electron - phonon, whose probability is small. Since in 
recombination there are always competition processes (especially radiative and nonradiative transitions at impurities) the 
processes of interest are hard to observe. The corresponding luminescence-yield generally is very low, so that interband 
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transitions of indirect materials cannot be used for light emission applications (Section 2.7).  

2.4 Transitions between Valence and Conduction Bands at 
High Photon Energies  

In the Sections 2.2 and 2.3 we have discussed the optical behaviour at photon energies in the vicinity of Eg on the basis 

of simplified band structures (e. g. Fig. 2.2). In the following we deal with (direct) upward transitions between arbitrary 
valence and conduction bands for real band structures. For this purpose we show again as an example, in Fig. 2.12, the 
Eν(k) diagram of GaAs (see Fig. 1.4).  

  

Now we will discuss the absorption spectrum related to these transitions, using the imaginary part of the dielectric 
function (Appendix 2).  

  

where the f-quantities are  

(2.16)     fCV(k) ~ |< kC|W0|kV >|2 / [EC(k) - EV(k)] 

The band indices C und V characterize the conduction and valence bands, respectively. (As before, the indices c and v 
(Sections 2.1, 2.2, and 2.3) refer to the lowest conduction band and the highest valence band, respectively.) The rest of 
the terms correspond to those used in Section 2.1.  

The structure of Equ. (2.15) is rather transparent: Contributions to the absorption at the photon energy hω are made by all 

transitions, for which the vertical transition arrow (length hω) fits into the separation of any combination of conduction 

and valence bands. In Fig. 2.12 we have included three such transitions( ) for a given hω. The δ function selects all 
transitions of that kind from the sum in Equ. (2.15). The contributions of the individual transitions are given by the 
quantities fCV(k), which are named oscillator strengths. After Equ. (2.16) these are proportional to the squared 

magnitudes of the matrix elements of W0 between the corresponding Bloch states (see Equ. (2.4)), i. e., as expected, 

proportional to the transition probabilities.  

Taking into account the fact (being ensured both experimentally and theoretically) that the f's, for a given pair of bands, 
have only a weak k dependence, and replaces them by corresponding average values FCV , we get  
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The quantitiy gCV(ω) introduced here, which is referred to as combined density of states , sometimes as interband 

density of states, indicates how many "fitting" hω arrows exist for a given pair of bands C,V. This has to be discussed in 
the three-dimensional k space. One can derive the following expression for the combined density of states:  

  

This relation is analogous to the expression for the contribution gν(E) of one band ν to the ordinary density of states 

given in Equ. (1.13). In both cases we are concerned with integrals over surfaces of constant energy in k space. However, 

in the present case these are determined by hω and by the Eν(k) functions of two bands. 

The ω dependence of ε2 obviously is given by the ω dependence of the combined density of states. In particular, the gCV

(ω) are responsible for the existence of structures in ε2(ω) (by the way, also of structures in ε1(ω), Appendix 2). It is 

found that structure appears at ω values at which there are,on the corresponding surface of constant energy, zeros of the 
integrand denominator, i. e. if the surface contains points at which  

(2.20)     grad
k
 [EC(k) - EV(k)] = 0 

Such points are named critical points. One obtains the form of those structures by expanding EC(k) - EV(k) into a Taylor 

series around the critical point k0,  

  

and inserting this into Equ. (2.19). Because of Equ. (2.20) there are no terms linear in k - k0. For the second derivatives 

of E
C

(k) - E
V

(k) we have written h2/µ
i
, i. e. we have introduced, similarly as in our earlier expansion in Equ. (1.10) to 

(1.12), parameters µi, having the dimension of masses. ki and k0i are the Cartesian components of the corresponding 

vectors in a coordinate system analogous to the one used in Equ. (1.10).  

The contribution of a critical point to gCV(ω) depends upon the signs of the µi. The structures expected for the four 

possible combinations of signs (denoted by M0, M1, M2 and M3) are shown in . 
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Obviously M0 (+++) und M3 (---) describe minima and maxima of EC(k) - EV(k), respectively. This explains the shapes 

of the corresponding structures shown in Fig. 2.13. In the cases of M
1
 and M

2
 one is dealing with something like saddle 

points of this function.  

In  we present ε2(ω) for GaAs (T = 300 K) [6], in an energy range beginning above Eg(about 1.4 eV) and 

comprising the visible and ultraviolet parts of the spectrum.  

  

  

The spectrum in Fig. 2.14 was obtained by ellipsometric measurements. This method is based on the fact that linearly 
polarized light in general becomes elliptically polarized when reflected by an absorbing medium. The dielectric function can 
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be determined from the analysis of the ellipse parameters, requiring, contrary to the methods mentioned so far (Section 2.2, 
Appendix 1 and Appendix 3), no measurements of intensities [7]. 

The assignments of the structures to critical points are given in Fig. 2.14. In the E
ν
(k)-diagram, which we repeat as 

, the responsible transitions are characterized by corresponding colours.  

When comparing Figs. 2.13 and 2.14 we have to note that, in the vicinity of structures, other k regions and band 

combinations generally contribute to ε2, whereby the ω dependence may be considerably modified.  

Remarkably, the optical absorption shows still a strong increase at high hω compared with the range around Eg. 

 

2.5 Derivation of Information on Energy Band Structures 

Studies of the optical spectra as dealt with in Section 2.4 contain information on the E
ν
(k) dependences of valence and 

conduction bands. In this connection the structures due to critical points are of special importance. Unfortunately, the 
spectra cannot be evaluated directly with respect to E

ν
 (k), apart from elementary statements as the determination of Eg 

from the position of the interband absorption edge. The desired information can only be obtained by performing band 

structure calculations for the corresponding material and comparing the resultant spectra, in particular ε2(ω), with the 

experimental data.  

Obviously, this involves a solution of the Schrödinger Equ. (1.5) with the Hamilton operator Equ. (1.4), i. e. the 

determination of the corresponding eigenvalues E
ν
(k)and eigenfunctions ψ

kν
 (r) ( Equ. (1.8)). It is shown by Equ. (2.19) 

and (2.16) that the E
ν
(k) give the combined density of states gCV(ω), whereas the ψ

kν
 (r), together with the energies, 

yield the oscillator strengths f
CV

(k) or F
CV

. With Gl. (2.17) one then obtains theoretical ε
2
(ω) curves.  

The theoretical results critically depend upon the choice of the potential U(r). As already mentioned, both the atomic 
nuclei and the other electrons contribute to U(r). The nuclear contribution is determined by the Coulomb potential 
generated by the nuclear charges and is not problematic, since the kinds of nuclei and their positions are known (the 
latter being obtained from X-ray data). Problems come from the electronic part, since this is determined by the 
wavefunctions of the other electrons, being objects of the calculations themselves.  

In a strongly simplified consideration one would expect that the contributions of the other electrons to the charge density, 

e|ψ
kν

(r)|2, which determine their Coulomb field, are effective. In reality, the situation is much more complex, mainly due to 

the existence of many-electron effects.  

In view of those difficulties, the problem can only be treated making use of considerable approximations [1]. From the 
degree of agreement between theory and experiment one can draw conclusions as to the quality of the approximations 
employed, i. e., in this manner, one obtains information concerning the correct U(r) and thereby information on the 
correct energy band structure and correct wavefunctions of the material investigated.  

Apart from the optical spectra of valence band to conduction band transitions, one makes use, if available,of additional 
experimental data, especially X-ray absorption and emission spectra (see Chapter3), photoemission spectra [2], and 
experimental values of effective masses [2] (see also Section 2.6)  

2.6 Transitions Between Sub-Valencebands 

As already mentioned in Section 1.3, in many materials the E
ν
(k) maxima of the three highest valence bands lie at k = 0, 

and at this point these three bands approach each other rather closely (see Fig. 1.4). This is related to the fact that the 
corresponding Bloch states originate from p-states of the constituting atoms; as is well known, these states are degenerate 
(threefold without spin). As a consequence, simple kinds of band structure calculations lead to a contact of the three 
bands at k = 0. More detailed theoretical studies show that the (partial) separation of bands observed is due to the 
existence of spin-orbit interaction and, in some cases, also to deviations from cubic crystal-symmetry.  

Here we restrict ourselves to materials with diamond and zincblende structure, for which only spin-orbit coupling is 
effective. This coupling is based on the fact that electrons in Bloch states, due to their behaviour in the vicinity of atoms 
(Fig. 1.2) in general possess an orbital angular momentum interacting with the spin (analogous to the situation of 
electrons in isolated atoms).  

 shows part of the sub-valence-band structure (roughly corresponding to the situation of Ge); with standard 
names and labels as used in the literature.  
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The j-labels refer to the analogy with atomic p-states, in the presence of spin-orbit coupling. The names "heavy-hole band" 
and "light-hole band" point to the magnitudes of the effective masses, which are inversely proportional to the magnitudes of 
the second derivatives (curvatures) of E

ν
(k)(Equ. (1.11)). 

The separation of the bands at k = 0  (∆∆∆∆) depends on the strength of the spin-orbit coupling for the material under 
consideration. In the Table the corresponding values are given for four substances.  

The dependence on the material can be related qualitatively to the constituting types of atoms: Substances consisting of 

atoms (especially anions) with high nuclear charge numbers exhibit large ∆ values and vice versa.  
 
 
 
 
 
 
 
 
 
 

  

In order that optical transitions between subbands can take place, one must have non-occupied final states, i. e. holes 
(defect electrons) have to exist. This requires (ignoring sophisticated experiments working with supplementary short-
wavelength irradiation) doping the material with "shallow" acceptor impurities (p-type doping). As the temperature 
increases the acceptor levels receive (due to collisions with phonons) electrons from the valence bands. The holes 
generated in this way are distributed, in thermal equilibrium, over the valence bands according to Fermi-Dirac statistics. 
Preferentially they occupy the states having the highest energy; hence these are possible final states for upward 

transitions. In  we indicate this range by green hatching. As a consequence, three types of transitions can occur, 

designated in  by 1, 2and 3 (vertical transitions, Section 2.1). These give rise to three bands in the absorption  

 ∆∆∆∆(eV) 

Si 0.044 

Ge 0.30 

GaAs 0.33 (see Fig. 1.4) 

CdTe 0.96 
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spectrum.  shows experimental results for p-type Ge [8]. In this Figure the absorption index κ (compare 

Appendix 2) is plotted versus the photon energy hω, on a double logarithmic scale. The curve parameter is the hole 
concentration of the samples investigated. As to be expected, the three bands are located on the low-energy side of the 
interband absorption edge (marked by E

g
 (= 0.8 eV)). Due to the comparatively small number of free final states, their 

intensity is much lower than the intensity of the true interband absorption discussed earlier; it grows, as should be 
expected, with increasing p.  

According to Fig. 2.17, the low- energy limit of band 1 and the high-energy limit of band 2, which are both given by ∆, 
coincide. The declining of bands 1 and 3 toward high energies and of band 2 toward low energies are mainly caused by 
the occupation of the final states with holes decreasing in these directions.  

The quantitative description of these spectra is based on the same principles as in the case of interband spectra (Section 
2.4), allowing for the doping- and temperature-dependent occupation of the electronic final states (and, partly, the k 
dependence of the oscillator strengths). We are not going to discuss these problems in detail.  

From measurements of inter-subband spectra one can obviously obtain information on the E
ν
(k) dependence of the 

valence bands. Especially the important parameter ∆ can be extracted directly. In addition, one is able to determine - as 
from studies of intraband transitions to be discussed later- concentrations of current carriers (hole concentrations in the 
present case) in a pure optical manner (see Section 4.1 for more details).  

2.7 Aspects of Applications 

Here we shall briefly discuss some applications based on upward and downward transitions between valence and 
conduction bands of semiconductors.  

Upward Transitions 

In these applications one makes use of the fact that upward transitions generate electron-hole pairs influencing the 
electrical properties of the material.  

When spatially homgeneous material is irradiated with photons in the interband range, an applied electric voltage leads 

to the motion of electrons and holes, which manifests itself (see  , image part a) in the appearance of 
photocurrent (n- or p-photocurrent, depending upon the ratio of the lifetimes of the two kinds of particles, application as 
photoresistors). In p-n junctions a change in the space charge distribution is brought about by optically generated 
electron-hole pairs. This leads to a photoinduced EMF (photoelements) or - under applied voltage - a significant effect 
on the current through the junction (photodiodes). This is illustrated in Fig. 2.18b; analogous phenomena can be realized 
in Schottky barriers.  

  

  

As is well known, those structures are being used in many applications, including the detection of radiation (especially in 
the infrared spectral region) and the transformation of radiation energy into electrical energy (solar cells).  

The minimum photon energy necessary fot these effects is obviously given by Eg. Hereby, in most cases, the sensitivity 

to radiation is limited, as indicated in , to a relatively narrow hω range above E
g
. The decrease appearing at 

high energies is related, generally speaking, to the decrease of the penetration depth of the radiation, which occurs owing 

to the increase of the absorption coefficient . The penetration depth can diminish down to the order 10-5 cm. (For 
instance, in the case of photoresistors the decrease is frequently due to the growing effect of surface recombination).  



page 29  

Therefore the optimum choice of a material for a given spectral range depends rather critically on the corresponding Eg 

values. To achieve a good adjustment or to cover a larger range, one frequently uses systems of mixed composition: One 
starts, e. g. from two compounds AC and BC with different Eg values, from which one can produce systems of the type 

AxB1-xC (metal sites partly occupied by A atoms, partly by B atoms). Then, by choosing the mixing ratio x (x between 0 

and 1), the desired Eg and, consequently, the sensitivity range of interest can be realized, see . As an example, 

we refer to CdxHg1-xTe, a material used for infrared detectors, for which Eg can be varied from about 1.4 eV (x = 1) to 

approximately 0 eV (small x).  

          

For the theoretical treatment of the electronic states of such systems, one has to employ techniques which go beyond the 
methods used for normal bandstructure calculations (Section 2.5), since one no longer has translation symmetry, as occurs in 
the case of "pure" systems. 

Downward Transitions 

This group of applications is based on the radiative recombination of electrons in the lowest conduction band with holes 
in the highest valence bands (Section 2.2). Here the electron-hole pairs are generated in p-n junctions by applying voltage 

in the forward direction (injection electroluminescence), see . One makes use of this phenomenon in 
luminescence diodes (also often referred to as LED's (= light emitting diodes)).  

Here the useful spectral region is also limited to photon energies in the vicinity of Eg, see Fig. 2.7. (This effect is even 

more pronounced than for the upward transitions.) In the present case this phenomenon mainly arises from relaxation 
processes (Section 2.2). The spectral range desired for the application is realized here, too, using systems of mixed 
composition, whose Eg values are chosen according to Fig. 2.20. GaAsxP1-x is a material employed for luminescence 

diodes wich different emission wavelengths (varying the occupation of non-metal sites).  

Strictly speaking, the injection electroluminescence is usually determined by transitions between impurity levels lying close to 
the band edges (e. g. "pair transitions betwen shallow donor and acceptor levels). As a consequence, the minimum photon 
energies are usually somewhat smaller than Eg. The emission spectra can be varied, as described earlier, by means of mixed 

compositions, because the impurity levels " are coupled to the corresponding bands". 

p-n structures as shown in Fig. 2.21 can also be used to achieve laser action. However, it has been found that a much 
higher efficiency is obtained with the aid of more complex structures, including quantum wells (see Chapter 6, especially 
Section 6.4), as employed today in semiconductor lasers.  
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In the preceding chapter we have dealt with transitions between valence and conduction bands. The corresponding 
photon energies typically are situated in the optical range (infrared, visible, or ultraviolet region).In the present short 
chapter we shall discuss transitions connecting the bands with deep lying, so-called core levels; the relevant spectra are 
generally found in the X-ray range.  

Fig. 3.1 shows the energy spectrum (without k dependence, energy separations not to scale) of NaCl, comprising 
conduction and valence bands as well as core levels.  

 

As an example we present here data referring to the ionic compound sodium chloride, because in this case there are 
experimental results which very clearly demonstrate the usefulness of X-ray spectroscopy (see Fig. 3.2 below). The general 
aspects of the following discussion are also valid for semiconductor materials consisting of several kinds of atoms. 

Electrons in core-level states are strongly bound to the atoms, hence they are similar to the states of free atoms.The 
wavefunctions are localized in the range of individual atoms, so that a description in terms of delocalized Bloch 
functions is no longer adequate. The energy levels do not form broad bands as found before, but are discrete as are the 

levels of isolated atoms. A general discussion of the different properties of valence band and conduction band states 

compared with the properties of core states is presented in .  

In view of these facts the core states are characteristic of the individual sorts of atoms, which we illustrate in Fig. 3.1 by a 
side shift of the Na and Cl type levels. In this Figure we restrict ourselves to K-type levels (atomic 1s states) and L-type 
levels (atomic 2s and 2p states). Level splittings, which are present in reality, have been omitted.  

In  we represent radiative transitions that are of interest to us. These are  

� upward transitions between core levels and conduction bands , manifesting themselves in absorption spectra and 

� downward transitions from valence bands to core levels , detected in emission spectra (fluorescence spectra). 

Of course downward transitions can only be observed if holes are created in the core levels, which are normally occupied 
by electrons; this requires supplying energy from outside (excitation by high-energy photons or high-energy electrons).  

Absorption spectra are usually determined by transmission measurements in the X-ray range. The components of the 
experimental arrangements are usually the same as shown in Appendix 1, Fig. A1 for the optical case, although their technical 
structure is often basically different. However, one can omit the I

R
 measurements due to the low reflectivity. A similar 

situation is found for the arrangement for emission experiments, represented in Appendix 1, Fig. A2; of course, the excitation 
source involving a laser has to be replaced by a suitable high-energy excitation source. 

Studies of those kinds of spectra yield information about the structure of valence and conduction bands. Let us 

demonstrate this for the example of upward transitions between a core level ρ and a conduction band C.  
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In this case the imaginary part of the dielectric function (Appendix 2) has the form (ignoring prefactors):  

  

where Eρ are energies of core levels and fCρ(k) are oscillator strengths. One has the following relations between 

oscillator strengths and transition matrix elements:  

(3.2)      f
Cρ(k) ~ |< kC|W

0
|ρ >|2 / [E

C
(k) - Eρ] 

 

These expressions are completely analogous to Equ. (2.15) and (2.16), whereby instead of the initial states |kV > and 

initial energies EV(k) entering there, the core states |ρ > and core energies Eρ, respectively, appear. (In addition, the 

conduction band states are modified through the retroactive effect of the localized hole occurring in the core level, which 
we ignore in the following.) Because of the big separation between conduction bands and core levels (Fig.3.1) the 
denominator in Equ. (3.2) may be regarded as k independent, so that we have  

(3.3)     f
Cρ(k) ~ |< kC|W

0
|ρ >|2. 

 

If, for the moment, we consider fCρ as totally k-independent, we get from Equ. (3.1) 

 

  

The sum over k, which includes, according to the δ-function all conduction band states with energy Eρ + hω, obviously 

is identical with the corresponding density of states gC, at this energy (see Section 1.4). Consequently, we obtain here 

(due to the presence of discrete initial levels) information about the density of states itself, rather than the combined 
density of states as in our previous discussion.  

However, the density of states function is considerably modified by the k dependence of fCρ, which has been ignored so 

far: This becomes evident by writing the matrix element in Equ. (3.3) as an integral over the wavefunctions  

  

The ψρ(r) are approximated by atomic wavefunctions: 

 

(3.6)      ψρ(r) = Rnl(r) Ylm(θ,φ) 

 

r, θ and φ are spherical polar coordinates related to the position of the corresponding atomic nucleus; Rnl(r) and Ylm(θ,φ) 

are radial functions and spherical harmonics. n, l, and m are atomic quantum numbers in the usual notation. 
Contributions to the integral in Equ. (3.5) are made only by the overlapping parts of the integrand factors, which are 

determined by the strongly localized ψρ. Therefore it is useful to expand ψ
kC in wavefunctions of the atom for which ψρ 

was chosen:  

  

For the matrix element we get  

.  

Here |n', l', m' > are atomic states with wavefunctions Rn'l'(r) Yl'm'(θ,φ). The matrix elements on the right-hand side, 

corresponding to intraatomic radiative transitions, are subject to the familiar dipole selection-rule   l' = l ± 1.  

If the initial level is of K(1s) type we have l = 0 and l'= 1. For L(2p) initial levels one gets l = 1, yielding l'= 0 or l'= 2. 
Hence, in the first case only the "p-parts" of the conduction band density of states make contributions to absorption,  
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while in the second case the "s-parts" and "d-parts" contribute. (These parts refer to the atomic sort, to which the core 

state ρ   belongs.)  

In  we show experimental absorption spectra of NaCl [9] for transitions starting from K (Na)-, K (Cl)-, L (Na)- 

and L (Cl)-levels. Here the absorption coefficient α is plotted on the vertical scale; see Appendix 2 for the relation 

between α and ε
2
. The spectra have been shifted against each other, so that the absorption edges corresponding to the 

bottoms of the conduction bands ( | ) coincide (compare the energetic separations in Fig. 3.1). The lines appearing in the 
L-spectra below this limit originate from transitions into so-called exciton states. In these states the excited electron 
remains localized, due to Coulomb attraction, in the vicinity of the hole generated in the L-shell.  

 

Obviously the density of states of the conduction band is considerably modified by the selection effect described. In 
particular, there are big differences between K-and L-spectra, enabling conclusions to be drawn as to the character of the 
conduction-band wavefunctions, which is evident from the previous discussion. However, in a more detailed 
interpretation, one has to take into account that usually multi-electron excitations contribute to the spectra (see the 
following remarks).  

An analogous situation is found for the emission spectra based on transitions from valence bands to core levels. These 
yield information on the various components of the valence-band density of states, depending on the type of final level.  

Hence, in principle very detailed checks of band-structure calculations are obtained from X-ray spectra. However, it 
should be noted that the analysis of the spectra is often complicated (compared with the case of valence-band to 
conduction-band transitions) by a series of effects not mentioned so far. These include:  

� Frequently, in addition to the one-electron transitions discussed here, many-electron processes contribute to the 

spectra, which is due to the strong localization of the core states.  

� The attainable spectral resolution of the structures in the density of states is generally worse than in the optical 

region (absolute values at least several tenths of an eV compared to values in the meV range in the optical case).  

� In the case of emission measurements, the spectral components of interest are often superimposed by 

contributions of different processes (e. g. contributions of "characteristic radiation" and "bremsstrahlung").  

Consequently, to derive information about Eν(k), one makes use, if possible, of data from the optical as well as from the 

X-ray range (see also Section 2.5).  
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In the present Chapter we shall be concerned with spectra that are correlated with upward transitions within an energy 
band. Obviously such transitions can be observed only if the band is occupied partially by electrons. This situation 
occurs, e. g., in the case of semiconductors doped with shallow impurities becoming thermally ionized at not too low 
temperatures.  

4.1 Absorption Spectra 

Let us consider a material doped with shallow donors. Then, in the case of thermal ionization, we have electrons in the 
(lowest) conduction band, which accumulate near its bottom (assumed to be at k = 0), see Fig. 4.1. Obviously, the 

occurrence of intraband transitions implies a change of the k vector (  ). Our previous discussion of indirect interband 
transitions ( Section 2.3) indicates that interaction partners in addition to photons and electrons have to take part in the 
present processes.  

          

It is found that two kinds of partners are important:  

� phonons. In these processes, which resemble the indirect interband transitions, a phonon is emitted or absorbed 

during the absorption of the photon (momentum close to 0 ). Here the change of the momentum of the electron 
(change of k) is brought about by the phonon. These processes can be referred to as three-particle collisions 
photon - electron - phonon as before.  

� impurities. These processes can be visualized as an electron-impurity collision taking part during the absorption 

of the photon (also something like a three-particle collision). The collision generally leads, as indicated in 

, to a deflection of the electron corresponding to a change of the k vector (k'  k''). Fig. 4.2 refers to a 
collision with one of the donors (being unevitably present as a consequence of doping), which is positively 
charged due to thermal ionization. Here the donor, which is essentially fixed in the crystal, only contributes to the 
change in k (elastic collision), while a contribution to the increase in energy merely comes from the photon.  

As to be expected, intraband transitions give rise to a continuous optical absorption spectrum. We shall not deal here 
with the theoretical treatment.The quantitative form of the spectra significantly depends upon various features (e. g. 
temperature, details of the energy band structure). Let us consider a case that is frequently realized:  

� nondegenerate semiconductor material (Fermi energy below the conduction-band minimum)  

� photon energy hω large against the thermal energy kB T  

� transitions limited to the range of quadratic Ec(k) dependence  

In this case the spectral variation of the absorption coefficient α (Appendix 1 and Appendix 2) is approximately given by 
power laws:  

(4.1)     α(ω) ~ nel ω
-β ~ nel λ

β 

 

(nel concentration of electrons in the conduction band, β > 0 parameter, λ light wavelength). For β one obtains the 

following values depending on the third collision partners:  

(For the imaginary part of the dielectric function, ε2(ω), we find, because of the relations given in Appendix 2 and the 

 

 ββββ

acoustic phonons 3/2

(longitudinal) optical phonons 5/2

charged impurities 7/2
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weak ω dependence of the refraction index, approximately power laws, too. However, here the exponents are higher by 
the value 1 in each case.)  

When comparing with experiment, one has to note that generally several types of collisions occur with similar frequency, 
the relative contributions being temperature dependent in a given system. (In particular, the frequency of the phonon 
collisions increases with growing temperature.) Hence, in real cases, one is often concerned with exponents deviating 
from the values given before.  

The decrease of α with increasing photon energy hω (Equ. (4.1)) has the consequence that for semiconductors intraband 
transitions are mainly observed in the infrared region.  

  

 shows experimental absorption spectra of intra-conductionband transitions for n-type InAs (T = 300K) in a log 

α - logλ plot, with nel (determined by electrical measurements) as a parameter [10]. In agreement with Equ. (4.1) we find 

a power-law form of the spectra and - within experimental accuracy - proportionality to n
el

. The exponent β deduced 

from the straight-line slope is close to 3 in all cases, which suggests, according to the Table, that optical phonons and 
charged impurities are the dominant collision-partners.  

Intra-valenceband transitions, which occur in p-type semiconductors, are usually masked by the transitions between sub-
valencebands appearing in the same spectral region (see Section 2.6).  

Making use of the intraband absorption as well as of the absorption due to transitions between sub-valencebands, it is - 
after corresponding calibration - possible to determine carrier concentrations in a pure optical (i. e. contactless) manner. 

(The detection limits are of the order 1015 and 1014cm-3, respectively.) The previous remarks show that one can also get 
insight into "scattering mechanisms" of the carriers from intraband absorption. This kind of information is conventionally 
obtained by means of electrical methods (measurements of conductivity and Hall effect), which require the production of 
electrodes. A remarkable application involves determining spatially inhomogeneous distributions of carrier 
concentrations in semiconductor material , in particular semiconductor devices, by scanning with a fine infrared beam 
having a wavelength in the range of the corresponding transitions.  

In literature the spectra due to intraband transitions are usually referred to as free-carrier absorption spectra, sometimes 
also as Drude-type absorption spectra.  

4.2 Reflection Spectra 

Intraband transitions also manifest themselves in reflection spectra. To understand the shape of these spectra, we refer to 
the oscillator model discussed in Appendix 4. Due to the fact that electrons and holes occupying a band-edge range 
behave, in many respects, similarly to free particles(see Section 1.3 ), they can be characterized, in a simplified manner, 

as oscillators with the resonance frequency ω
0
 = 0 ("acceleration in an electric field without a restoring force"). As a 

consequence, we can use Fig. A5 to get a rough idea of the optical spectra. For ω0 = 0 we have to consider, in this Figure, 

only the ω ranges above the resonance frequency. To begin with, that means that the quantities ε2 and κ, which  
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characterize the absorption, monotonously decrease with growing ω. This behaviour transfers to α(ω) and thus 
qualitatively corresponds to the theoretical and experimental results presented in Section 4.1 .  

For the reflectivity R we expect on the basis of Fig. A5d a fairly weak variation at low ω, with values close to unity, then 

a steep drop to zero, followed by an increase to a nearly constant low level, see . The steep drop of R is referred 
to as the plasma reflection edge. As in the general case ( Appendix 4), the drop approximately coincides with the zero of 

ε
1(ω).  

          

To estimate the position of the edge for an n-type material, we use the oscillator formula Equ. (A4.6), specializing it to 

ω0 = 0, γ = 0, A = 4π Q2 N / M ( Equ. (A4.4)), Q = e, N = nel and M = mc* (effective mass of the conduction-band 

electrons). Then we obtain  

(4.2)     ε1(ω) = εoo - 4π e2 nel / mc* ω2 

 

From this we get the zero (ωp) of ε1(ω): 

 

(4.3)     ωp = (4π e2 nel / εoo mc*)1/2 

 

ω
p is called plasma frequency. In the case of semiconductors ωp is typically located in the infrared range. 

 

The term plasma frequency originates from the fact that, strictly speaking, one is dealing with the the frequency of a 
characteristic vibration of the system of band electrons, which is similar to the characteristic vibration of a gas plasma. (This 
vibration cannot be excited directly by optical means.)  

 shows experimental [11] reflection spectra R(λ) (λ light wavelength) for n-type InSb, again with nel as a 

parameter. The result is as expected: In particular, in the case of n
el

 values, for which the whole λ range could be 

investigated, we see practically complete reflection at large λ, and, at decreasing λ, the plasma reflection edge involving 

the drop of R to zero. With the parameter values for InSb (mc* near 0.03 m0 (nel-dependent), εoo = 15.7) and the nel data 

given in the Figure, one obtains plasma frequencies corresponding to the edge wavelengths observed. The edge shift with 
nel shows the trend expected after Equ. (4.3). (These results lead to an additional method for the optical determination of 

nel.)  

Of course absorption spectra can only be observed, with sufficient accuracy, in the spectral range where the reflectivity is 

clearly below unity. ( The spectra of InAs presented in Fig. 4.3 ((mc* close to 0.03 m0 (nel-dependent), εoo = 12.25) are all 

situated on the high-energy side of the plasma edge.) By the way, high carrier concentrations giving rise to high reflectivity in 
a large part of the infrared region, sometimes complicate studies of phonon transitions, which are usually also located in this 
region (Section 8.2 and 8.3).  
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In the case of metals, where the nel values are larger by many orders of magnitudes, one is concerned with much higher 

plasma frequencies; that is, among other things, the reason for the high reflectivity in the visible range.  
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5.1 Exciton States 

As already mentioned in the Overview Chapter, one can observe, at not too high temperatures, at photon energies slightly 
below the band gap Eg, lines in the absorption spectrum, which are due to the formation of "excitons". Analogous 

phenomena are found in the luminescence spectrum.  

The appearance of exciton states cannot be understood on the basis of the one-electron approximation applied so far. For 
a given electron this approximation is related to the simple Hamilton operator  

(1.4)     H = p2 / 2m0 + U(r) 

 

It is important that here we are dealing with a definite potential U(r), being independent of the states of the other 
electrons. Significant deviations from this condition occur in the case of an interband transition: Obviously, in the one-
electron picture, such a transition leads to a change of the wavefunction (Bloch function) of one electron,  

(5.1a)     ψ
kv

 (r) →→→→ ψ 
kc

 (r) 

 

and thus changes the contribution of this electron to the charge density,  

(5.1b)     e|ψ
kv (r)|2 →→→→ e|ψ 

kc (r)|2 

 

(see Section 2.1). The electrons remaining in the valence band "feel" that small change in the potential (change of the 
Coulomb energy and of more complex portions of interaction), resulting in a change of their wavefunctions. This, in turn, 
has an effect upon the wavefunction of the electron having performed the optical transition. This leads to the formation 
of electronic states unlike Bloch states, which has some influence on the optical spectra. Generally speaking, this 
influence is not strong, but there may be pronounced effects at photon energies near E

g
 (Section 2.1).  

Fortunately, for semiconductors, these interaction processes, which are actually rather complex, can be treated 
theoretically in a rather simple way by using the hole concept: One only has to consider the modification of the states of 

the electron in the conduction band and of the hole in the valence band - which carry a negative and positive charge, 
respectively - due to their mutual Coulomb interaction . Hence, in such cases, we are dealing with a two-body problem.  

To calculate these states the so-called effective mass approximation is used. To this end, masses - given by the effective 
masses of the corresponding band edges - are assigned to the two particles. (Later on we shall discuss the validity range 
of this approximation.)  

  

In the following we refer to a material of cubic symmetry with band extrema at k = 0, as represented in  
(simplified compared with real band structures, see Fig. 1.4). In this case both effective masses are isotropic. The 
conduction band mass (definition in equation Equ.(1.11)), which we refer to as m

c
*, is positive. The valence band mass 

defined in an analogous way, mv*, is negative due to the sign of the second derivative (sign of the band curvature). Now 

we introduce effective masses of electron (me) and hole ((mh):  

(5.2)     me = mc*      mh = -mv* 

 

So both masses are positive. (The second relation in Equ. (5.2) corresponds to the general definition of the hole effective 
mass, which appears if the hole concept is introduced in a logical way [1].) Using the above assumptions on the band 
structure, the problem to be treated is reduced to the hydrogen problem of atomic physics: The proton is substituted by 
the hole, and the H-electron is replaced by our electron. The Schrödinger equation is  
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(5.3)     {- (h2/2m
e
)∆

e
 - (h2/2m

h
)∆

h
 - e2/[ ε

st
| (re

 - rh
) | ]}Φ(re

,rh
) = E Φ(re

,rh
) 

 

Here re
 and rh

 are the position vectors of electron and hole, respectively. ∆
e
 and ∆

h
 are the Laplace operators acting on 

the respective coordinates, εst is the static dielectric constant, Φ(re,rh) is a wavefunction for electron and hole. E is the 

energy of this two-particle system. Hence the terms in the curly brackets represent the kinetic energies and the Coulomb 
attraction of the particles, the latter being weakened by the electric polarization of the crystal (CGS system), which is 
approximated by the expression for a continuous medium.  

The derivation of this so-called effective mass equation (5.3) is very time-consuming [12]. Roughly speaking, this 
derivation involves eliminating the potential U(r), introducing effective masses instead of it, and transferring the real 

complex interactions into the simple Coulomb energy -e2/[εst|(re - rh)|]  

The functions Φ(re, rh) as well as the functions (χ(R), φ(r)) to be introduced later actually are not correct wavefunctions of 

the particles. They only rather roughly give the corresponding position dependences. This will be dealt with in more detail in 

 . The effective mass approximation is frequently used in solid state physics, e. g. in the discussion of the 
electronic states of "shallow" impurities and the states of charge carriers in semiconductor quantum structures (Section 6.1).  

Equ. (5.3) is solved in a manner analogous to treating the H-problem[13]. For better understanding the most important 
steps will be reproduced here. First we define coordinates (position vectors) for the center-of-mass and relative motion of 
the particles,  

(5.4)     R = [m
ere

 + m
hrh

] / [m
e
 + m

h
]      r = re

 - rh
 

 

and introduce the total mass (M) and the reduced mass (µ) of the particles,  

(5.5)     M = me + mh,      µ-1 = me
-1 + mh

-1 

 

The transformation of Equ. (5.3) to the new coordinates R and r yields  

(5.6)     {- (h2/2M)∆
R

 - (h2/2µ)∆
r
 - e2/[ εst|r| ]} Φ(R,r) = E Φ(R,r) 

 

The two first terms in the curly bracket describe the kinetic energy of the center-of-mass and relative motion, 
respectively. As to be expected, the potential energy (third term) only depends upon the relative coordinates.  

Equ. (5.6) can be solved using the separation approach  

(5.7)      Φ(R,r) = χ(R) φ(r).  

For χ(R) we get  

(5.8)      χ(R) = (V-1/2) exp(iKR) 

 

Here V is the volume of the crystal and K a propagation vector for the center-of-mass motion. The wavefunction 

component φ(r) of the relative motion is determined by the Schrödinger equation  

(5.9)     { - (h2/2µ)∆
r
 - e2/[ εst|r| ]} φ(r) = η φ(r). 

 

The total energy E (Equ. (5.3) and (5.6) ) consists of a contribution of the center-of-mass motion and a contribution (η) 
of the relative motion, the latter appearing in Equ. (5.9):  

(5.10)     E = (h2/2M)K2 + η. 

 

The center-of-mass motion is a (quasi) free motion; this manifests itself in the form of the wavefunction component, Equ. 

(5.8), and the energy contribution (h2/2M)K2 in Equ. (5.10). Apart from the parameter values, Equ. (5.9) corresponds to 
the Schrödinger equation which is the usual starting point for the discussion of the H-atom; there one mainly restricts 
oneself to studying the relative motion of the particles. However, as we shall see shortly, the center-of-mass motion is 
highly important in the analysis of exciton transitions.  

For discussing exciton spectra no further calculations are necessary. One has simply to make the following two  
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substitutions in the final expressions for the H-atom [13]:  

(5.11)     (reduced) mass of the electron in vacuum → µ,      elementary charge → e / (ε
st

)1/2 

 

In the case of positive η we are concerned with electron-hole-pair states, i. e. with non-bound states of electron and hole. 
Such states are also obtained on the basis of the one-electron-approximation; remember that the concept electron-hole-
pair has been introduced earlier.  

The bound states of electron and hole in semiconductors (exciton states in the original sense) are of special interest. 

These correspond to negative η values. In this case the wavefunctions for the relative motion φ(r) are characterized by 

quantum numbers n, l, and m as for an atom; thus one writes φnlm (r). (The spin quantum number is ignored here.) The 

lowest-energy state ("1s state") is the state with n = 1 and l = m = 0. In this case φ only depends on |r|.We get  

(5.12)     φ100(r) ~ exp(-|r| / aexz) 

 

aexz is the so-called exciton radius, i. e. the average distance of electron and hole in the exciton. The substitution 

according to Equ. (5.11) yields  

(5.13)     aexz = (m0 / µ) εstaH 

 

aH is the Bohr radius. The energies η of the exciton states only depend on n. We have 

 

(5.14)     ηn = - (1/n2)ED,     ED = (µ / m0)εst
-2 EH. 

 

Here EH is the ionization energy of the H-atom; Equ. (5.14) is obtained with the substitution (5.11). ED is the 

dissociation energy of the exciton, i. e. the energy that has to be spent in order to split an exciton in the lowest bound 

state (n = 1) into an electron-hole pair of minimum energy (η = 0), if there is no center-of-mass motion in the two states 
(difference of the corresponding E values in Equ. (5.10) for the case K = 0).  

As an example we put me = 0.067 m0, mh = 0.5m0, εst = 11 (these values approximately correspond to GaAs) and, 

besides, aH = 5.29*10-9cm, EH = 13.55 eV. We get  

     aexz = 9.8*10-7cm and ED = 6.6 meV. 

 

Obviously, ED is a very small energy (in particular, much smaller than typical Eg values). This means that the binding of 

electron and hole in the exciton is weak . As a consequence, exciton effects can only be observed at lower temperatures; 
when heating the crystal the excitons are soon dissociated by collisions with phonons. For instance, for the above ED 

value we do not expect exciton effects at room temperature. (Then ED is much smaller than the thermal energy, kBT = 25 

meV.)  

The weak binding of electron and hole also manifests itself in the fact that a
exz

 is large against the size of the unit 

cells ,which we outline in . On the other hand, this result confirms that in the present case the description in 
terms of the effective-mass Equ. (5.3) is justified: For a given material such a treatment (possibly in some more 
complicated form) is correct, if aexz (first calculated formally) has this property.  

  

In some sense, we are still dealing here with particles near the band edges, having the corresponding effective masses, their 
motion being only weakly disturbed by their mutual interaction. Because of the large separation of electron and hole, the 
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Coulomb field weakly varies between neighbouring unit cells. Consequently, on this scale the field is nearly homogeneous so 
that the potential in Equ. (5.3) may be approximated by a continuum expression. 

In (nonmetallic) materials, for which the effective-mass equation is not applicable (e. g. ionic crystals, organic 
substances, and solid rare gases), there are, in general, also exciton states, their spatial extension being comparable with 
the size of the unit cells. In this case one is dealing with localized excited states, which are able to migrate through the 
crystal (analogously to the center-of-mass motion discussed earlier). These phenomena are referred to as charge-transfer 
excitons or Frenkel excitons, depending on whether the wavefunctions are localized on small groups of atoms and on 
single atoms, respectively. In contrast, the extended excitons typically observed in semiconductors are called Wannier-
Mott excitons.  

5.2 Optical Transitions 

Let us first discuss which is the correct energy-momentum diagram for analysing optical transitions. Obviously the 
simple band-structure diagrams as Fig. 1.4 and Fig. 5.1, respectively, cannot be used, since the exciton states are related 
to more than one band (i. e. to conduction and valence bands).  

We have to consider here the energy and momentum of the electron system of the crystal, specifically  

� the ground state (all valence bands and deeper bands fully occupied with electrons, all conduction bands empty) 

and  

� excited states with one exciton or one electron-hole pair.  

We have collected the properties of those states ((quasi-)momentum h K and energy E ) in the following Table (valid for 
small |K| and materials, whose band stucture can be approximated according to Fig. 5.1).  
 

 
 
In the ground state the momentum of the electron system vanishes, since the momenta of the individual electrons 
compensate each other (there are only fully occupied and empty bands). We have put the energy of the ground state 
equal to zero. The momentum of the system in the excited state must be given by the momentum of the exciton or 
electron-hole pair, i. e. by hK. To generate such an excited state, energy has to be added, namely (as in the simple picture 

considered earlier) Eg, if an electron-hole pair of minimum energy ((h2/2M) K2 = η = 0) is to be created. If the two 

particles get, in addition, a resultant center-of-mass energy and / or energy of relative motion, E
g
 has to be increased by 

the value (h2/2M) K2+η ( Equ. (5.10)). 

  

For discussing optical transitions we shall use an E (K) diagram (see ) (for a gradual construction of Fig.5.3 see 
the electronic version of the course). We plot these dependences along a straight line in K space which passes through K 
= 0 and mark the energies 0 und Eg on the E axis.  

 ground state excited states

 momentum       hK = 0          hK =h K   nonzero 

    energy         E = 0  E =E
g
 + (hK)2 /(2M) + η 
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The ground state is represented by a point at K = 0, E = 0, according to the Table.  

We now consider the excited states.  

Obviously, the discrete levels (η < 0, Equ. (5.14) ) give rise to parabolas. The energies of the minima (situated at K = 0) 

are given by E = Eg + η according to theTable. For non-negative η we get the (grey shaded) continuum, whose lower 

limit is the parabola E = Eg + h2/2M) K2 (corresponding to η = 0). The character of the states is indicated in the diagram 

(EHP = electron-hole pair). The E axis is broken, because the picture is not to scale.  

We are interested in optical transitions between the ground state and states with one exciton or one electron-hole pair. In 
upward transitions the exciton or electron-hole pair is created "out of nothing", in downward transitions the exciton or 
electron-hole pair is annihilated ("the electron jumps into the hole"). These processes are accompanied by the absorption 
and emission of a photon, respectively.  

There is a fundamental selection rule for the K vectors, which is based on the translation symmetry of the crystal, as the k 
selection rule in the simple way of consideration . According to this rule, only excitons and electron-hole pairs, whose 
momentum hK agrees with the momenum of the photon hs, can be created or annihilated (law of momentum 
conservation) :  

(5.15)      K (= K) = s  

In the present case, the momentum law can be simplified as earlier, taking into account that in the spectral ranges under 
discussion, |s| is small compared with the size of the Brillouin zone. Thus instead of Equ. (5.15) we can usually write  

(5.16)     K (= K) = 0  

It is easily realized that, in the cases of the creation and annihilation of electron-hole pairs, Equ. (5.16) is equivalent to 

the old k selection rule (see ). Of course, in addition to the law of momentum conservation, we have the 
energy balance:  

(5.17)     Eg + η = hω, 

 

i. e. the energy of the excited states (Table, specialized to the case K = 0) must be equal to the energy of the photons 

involved. Hence, in the E( K) diagram, the optical transitions are to be represented by vertical arrows of length hω, which 

begin or end at the ground state point ( ).  

η assumes discrete values in the negative range (see Equ. (5.14) ), and this transfers to the corresponding hω values. 
Hence, as is also visible in Fig. 5. 3, line spectra are found here. The line structure occurs, although the overall energy 
spectrum is continuous; it is a consequence of the K selection rule (Equ. (5.15) and (5.16)).  

5.3 Absorption Spectra 

Now we discuss what should be the form of the absorption spectra due to upward transitions; later on we shall compare 
the results with experiment.  

          

The expected behaviour is shown in Fig. 5.4. Here we plot the absorption coefficient α against the photon energy hω (for 
a gradual construction of Fig.5.4 see the electronic version of the course). From the previous consideration (Section 5.2)  
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we expect that the transitions to exciton states give rise to infinitely sharp lines at positions corresponding to the various 
n - values. This is indicated in Fig. 5.4 by grey lines ( ) taking into account the theoretical result that the line intensities 
decrease with increasing n. In experiment we are dealing with finite linewidths (black spectrum), due to the fact that an 
exciton generated in a state with K = 0 after some time goes into other states (in particular states with nonzero K , Fig. 
5.3). This originates from the interaction with phonons or impurities (lifetime broadening).  

Since on approaching Eg, the separation of the lines decreases, only the lines with the smallest n can be resolved, while 

those with higher n melt into a quasi-continuum. At hω = Eg this quasi-continuum passes continuously to the "real" 

continuum based on the formation of elctron-hole pairs. At somewhat higher hω values, the spectrum deviates from the (
) curve expected from the primitive considerations. In Fig. 5.4 we have assumed that only two exciton lines are 

resolvable.  

At hω values a little above Eg the absorption curve lies higher than expected in the simple consideration. This is due to 

the Coulomb attraction between electron and hole ( Equ. (5.3)) being now taken into account. It has the consequence that 

- also in the absence of binding - there is a mutual influence between the motions of the two particles.  visualizes 
the effect of this interaction.  

However, these effects only appear at small particle-energies, as are present a little above Eg. At high energies the 

particles practically " ignore each other", moving "along straight lines". In the quantum-mechanical picture, this means 
that a description on the basis of the one-electron approximation, i. e. in terms of Bloch states, is again adequate. As a 
consequence, at larger distances from Eg the spectra join the naive curve ( ), and the previous discussion (Chapter2 ) is, 

in general, justified. By the way, there are analogous effects in the absorption spectrum of the H - atom close to the 
ionization energy, due to the Coulomb interaction between electron and proton [13].  

  

Let us now compare these results with experiment.  shows an absorption spectrum of GaAs measured [14] at a 

very low temperature ( 2 K) . Here the quantity αd (d sample thickness, about 2 µm ) is plotted against the photon energy 
(near-infrared region). As indicated by the labels, the two most intense lines originate from the creation of excitons with 

n = 1 and n = 2. At high hω, these lines are followed by the continuum. The additional line characterized by "BE" is due 
to the formation of a so-called bound exciton, i. e. an exciton bound to an impurity. We shall not give here a discussion 
of this phenomenon. Apart from the BE line, the spectrum corresponds to our construction in Fig. 5.4 (which we have 
deliberately performed for a situation similar to the GaAs case). The position of Eg (= 1.5192 eV at the temperature of 

the measurements) and the ED value are indicated.  

The experimental ED value of about 4.2 meV somewhat deviates from the value obtained earlier using GaAs parameters 

(Section 5.1), because the simplified valence band structure taken as a basis in Equ. (5.3) and Fig. 5.1 does not correspond to 
the real situation in GaAs (Fig. 1.4) .  

In  we represent the temperature dependence of the absorption spectrum of GaAs at higher temperatures [15}. 
Let us first look at the 21 K spectrum. Here (and also in the 90 K and 186 K spectra) we only see the n = 1 line and a 
subsequent continuum. The n = 2 line is no longer visible, due to strong broadening. This effect in part originates from 
the temperature increase compared with Fig. 5.6 (shorter lifetime due to more frequent collisions with phonons), in part 
probably from a higher defect-concentration in the corresponding sample (lower crystal-perfection, measurements of 
earlier origin). When going to still higher temperatures, two main effects are observed:  
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� A shift of the spectrum to lower photon energies . This is related to the decrease of Eg occurring with growing 

temperature. We shall not discuss this effect, which also originates from the interaction of the electron system 
with phonons, in detail.  

� The n =1 line undergoes additional broadening, due to more frequent collisions with phonons, and, finally, at 294 

K, is no longer observable. In the last case, the spectrum is qualitatively similar to the spectrum expected in the 
absence of exciton effects (Fig. 2.4). This situation can be roughly characterized by saying that the states of 
electron and hole are less affected by their mutual interaction than by the collisions with phonons.  

Hence the disappearance of exciton effects on heating is generally to be expected, and is indeed observed for all 
materials. In the GaAs case this already occurs at relatively low temperatures. This originates fom the fact that here the 
dissociation energy ED is rather small (weak coupling between electron and hole). In Section 5.5 we shall compare the 

ED values for various substances.  

5.4 Other Optical Spectra 

For materials with direct band structure, upward transitions in the exciton region (transitions in which excitons are 
created) can also be detected in reflection spectra . Fig. 5.8 shows, as an example, a reflection spectrum of CdTe [16] in 
the range of the n = 1 and n = 2 transitions. The n = 1 structure qualitatively agrees with the dependence expected on the 
basis of the oscillator model ( Appendix 4). This is also true, within experimental accuracy, for the very weak n = 2 

structure. The n = 1 structure can be described by special parameter combinations (relatively large εoo values and 

relatively small A values). The maximum value of R for n = 1 approximately corresponds to the value expected at the 
resonant photon energy (Appendix 4) at which that sort of excitons is generated.  

  

Downward transitions in the exciton region can be studied by measurements of photoluminescence spectra. We now 

represent the relevant processes in the E (K) diagram introduced earlier ( see ). Of course, the excitation of 

photoluminescence by laser radiation of sufficiently high photon energy (hωL > Eg) is subject to the K selection rule Equ. 

(5.16). We indicate this process in Fig. 5.9 (left-hand part) by . From the electron-hole pair state now occupied 

relaxation with phonon emission ( ) into lower- energy states takes place rapidly. Then radiative transitions can start 
from the K = 0 states (Fig. 5.9, right-hand part).  
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There are two possibilities: 

1. Relaxation to the lower edge of the electron-hole pair continuum, which is the starting point for the radiative 

recombination of electrons and holes (  ). This type of relaxation and recombination processes has been already 
described on the basis of the simple E

ν
(k) diagram in Section 2.2.  

2. Relaxation to one of the exciton parabolas with subsequent radiative transition from the minimum of this parabola 

( K = 0 ) ( ).  

The radiative transitions of type 2 are called annihilation transitions, since we are concerned with the destruction 
(annihilation) of an exciton in each case.  

From a linguistic point of view, it is incorrect to refer to the "recombination" of excitons, because one is dealing here with the 
destrucion of one particle.  

On the basis of Fig. 5.9 we expect that all types of transitions manifest themselves as lines in the luminescence spectrum. 
The lines due to exciton annihilation (type 2) should nearly coincide with the absorption lines originating from the 
corresponding reverse transitions (Fig. 5.3). The line due to the recombination of electrons and holes (type 1) should lie 
directly above Eg.  

  

It is important to note that the line intensities are determined both by transition probabilities and and the occupation of 
the initial states (Fig. 5.9). Because the relaxation processes are very fast, mainly the lowest-energy states become 
occupied before radiative transitions can occur. Hence, transitions at small photon energies - in particular in the case of 
low temperatures - are favoured even more clearly than in the absorption spectrum (Fig. 5.4) .  

In  we show a corresponding part of the photoluminescence spectrum of GaAs [17]. For comparison we also 
reproduce here the absorption spectrum presented in the preceding Section (Fig. 5.6). In Fig. 5.10 the emitted light 

intensity IE is plotted as a function of photon energy hω (see Appendix 1 ). The assignment to the n = 1 and n = 2 states  
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is indicated.  

An essential complication lies in the fact that the luminescence light is partly absorbed before leaving the crystal. This 

"reabsorption" is especially strong in spectral regions in which the absorption coefficient α is large. Consequently, dips 
appear in the spectrum at energies where originally emission peaks are expected. The variation of the intensity to be 
expected without this reabsorption effect is represented as a dotted curve ( ) in Fig. 5.10.  

The preference of the low-energy initial states is clearly visible (compare n = 1 with n = 2, taking into account the 
different ordinate-scales). The electron-hole recombination is completely absent at the temperature of the measurements. 
The line labelled BE* is attributed to the annihilation of a bound exciton in a higher excited state. As already mentioned, 
many (intense) lines which are also due to bound excitons, are found at energies below the spectrum shown in Fig. 5. 10 . 

By the way, it should be noted that, compared with other materials, relatively few transitions of "free" excitons can be 
observed in the emission spectrum of GaAs; this is related to the low E

D
 value (see Section 5.5).  

5.5 Comparison of Exciton Effects for Various Semiconductor 
Materials 

As stated at the end of Section 5.3 , the strength of exciton effects in a given substance is determined by the magnitude of 
their exciton dissociation energy. In the following Table we have compiled the (experimental) E

D
 values for important 

semiconductor materials.  

Clearly in most cases the values are much larger than for GaAs. An extremely small value is found for InSb, where 
exciton effects usually can be completely neglected. For materials with direct band-structure, large ED values generally 

lead to the appearance of several (more than two) exciton lines (also observable at higher temperatures). Spectra with 
many lines are particularly found for some Cu compounds (here represented by Cu2O). For indirect materials there is no 

line stucture in the absorption spectrum, because in this case excitons can only be created with the assistance of phonons 
(having a continuous energy spectrum).  

As already mentioned, there are considerable deviations from the values obtained (Equ. (5.14)) for the case of an idealized 

band structure (Fig. 5.1). However, the trends expected from that equation (dependence on εst and on the effective masses) are 

represented fairly well. This is also true for materials crystallizing in the non-cubic wurtzite structure (CdS, CdSe, ZnO, partly 
ZnS). In the cases where, due the more complicated band structure, several exciton series are observed, the values presented 
here are to be regarded as corresponding averages.  

      Ge       Si   InSb  GaAs     GaP    CdS   CdSe  CdTe  ZnO  ZnS  ZnSe  ZnTe  Cu2O 

 ED (meV)     2.7     14.3    0.5    4.2     19.5    30.5   15.5   10.5    59  39.5   19.9   13.2     98 

  indirect  indirect    indirect         
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Chapter 6 

Electronic Transitions in Semiconductor Quantum 
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So far we have been dealing with the optical behaviour of homogeneous solids having macroscopic dimensions. If the 
dimensions are reduced to the µm or nm range, one may get systems with quite different properties, which have become 
important for applications, particularly in optoelectronics [18, 19]. We shall discuss this kind of phenomena in the 
present Chapter.  

To illustrate the physically important effects, we first consider the simplest type of such structures, the so-called single 
quantum well. These are layer structures of the kind represented in Fig. 6.1. As a specific example, we discuss the 
combination A = GaAs, B = AlxGa1-xAs (x mixing ratio, compare Section 2.7), which, so far, plays a most important role 

in applications. The small thickness d of the A layer is essential. We concentrate on the case that d is some 10 nm (some 

10- 6 cm), and the dimensions parallel to the interfaces are in the macroscopic range.  

          

The standard method used for producing such structures is molecular beam epitaxy (MBE), see .  

6.1 Electronic States and Energy Spectrum 

6.1.1 General  

First we again refer to the specific case of the GaAs-AlGaAs system (Fig. 6.1). The essential effects result from the 
different positions of the lower conduction-band edges and the upper valence-band edges in the three regions. AlGaAs 
has the largest band gap (Eg), the conduction-band edge being shifted upward, the valence-band edge downward with 

respect to GaAs. Thus wells parallel to the interfaces are formed, both for electrons and for holes. In  we 
represent the behaviour of the bands along a straight line perpendicular to the interfaces. The magnitudes of the jumps in 
the band edges are referred to as band offsets. Of course, these depend upon the combination of materials employed (on 
the x-value in the present case). If we combine different kinds of materials, we may also find cases where, in the central 
region, there is a well only for one type of particles, while there is a barrier for the other type.  

The electronic energy spectrum is determined by the fact that perpendicular to the interfaces - at not too high energies - 
the particle states are forced to localize in the A region as in a potential box, while parallel to the interfaces a quasi free 
motion occurs. Since potential boxes have discrete energy - levels, we expect that this effect manifests itself in a 
corresponding structure of the energy spectrum, as indicated by  in Fig. 6.1.  

In the following we shall discuss this question in more detail, starting from a band structure of the kind shown in 

. This band structure corresponds to the lowest edge of the conduction band and the upmost edge of the two 
highest valence bands of GaAs (Fig. 1.4). Qualitatively this picture also describes the situation for AlxGa1-xAs at not too 

high x. The labels HH and LH stand for the names "heavy-hole band" and "light-hole band" , respectively, already used 
earlier .  

Strictly speaking, an energy band structure characterized by a k dependence cannot be defined in the case of a mixed 
compound as AlxGa1-xAs, because we are concerned here with a random distribution of Al and Ga atoms over the metal sites, 

so that there is no translation symmetry. However, it has been shown that for small portions of one sort of atoms (e. g. for 
small x values), the energy spectrum can be approximated by interpolated band structure functions E

ν
(k) ( " interpolation" 

between the the contributions of the two sorts of atoms).  

As in the case of a homogeneous macroscopic crystal, the quantitative discussion is based on a Hamilton operator in the 
one-electron approximation:  
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(1.4)     H = p2 / 2m
0
 + U(r) 

 

Of course, the potential U(r) is different in the type A and type B regions (and, as a whole, does not have translation 
symmetry). In many cases, it can be assumed that within these regions U agrees with the potential in the corresponding 
homogeneous materials (apart from the effect of mechanical deformations which are due to the different sizes of the unit 
cells of A and B) and that abrupt transitions occur at the interfaces. Under these conditions the problem can frequently be 
treated - for not too small d (d much larger than the size of the unit cells) - using procedures similar to the effective mass 
approximation .  

Now we shall discuss in more detail the conduction band states, because in this case we have a comparatively clear 
situation due to the simple band structure (Fig. 6.2).  

6.1.2 Conduction Band States  

In this case we start from the following effective mass equation for the envelope function Φ(r) :  

(6.1)     {- (h2/2m
c
*(z)) ∆ + U

c
(z)}Φ(r) = E Φ(r) 

 

Uc(z) is a box-type potential which represents the difference between the lowest conduction band edges of the materials 

A and B, with the box walls corresponding to the offset U0 ( ). Here the coordinate system has been chosen in 

such a way that the z axis is perpendicular to the interfaces. Uc is normalized to zero in region A. mc*(z) is the effective 

mass at the band edge, which is, in general, different for A and B, i. e. z-dependent (Fig. 6.3). In the following we ignore 

the z-dependence (which is normally weak), using, instead, an average value. ∆ and E are the Laplace operator and the 
energy, respectively, as usual.  

  

We start with the expression  

(6.2)     Φ(r) = exp(iktr) χ(z) 

 

where we have introduced a propagation vector kt = {kx, ky, 0}, which is perpendicular to the z axis. For the definition of 

χ(z) we obtain  

(6.3)      - (h2/2mc* )χ ''(z) + Uc(z)χ(z) = ε χ(z). 

 

where  

(6.4)     E = (h2/2m
c
* ) kt

2 + ε 

 

The factor exp(iktr) in Equ. (6.2) and the term (h2/2mc* ) kt
2 in Equ. (6.4) express the quasi-free motion perpendicular to 

the z axis. Equ. (6.3) describes the effect of the box-type potential acting in the z direction, and determines the factor χ(z) 
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in the wavefunction in (6.2) as well as the contribution ε to the total energy in (6.4).  

For ε < U0 the box Equ. (6.3) yields discrete levels which we shall refer to as εN, enumerating them with the index N. 

The corresponding wavefunctions χN(z) are localized ( ). For ε > U0 we obtain a continuous ε spectrum and 

delocalized χ functions.  

  

In the discrete ε range the total energy E depends on kt as well as on N. We write 

 

(6.5)     EN(kt) = (h2/2mc* ) kt
2 + εN             N = 1,2,.... 

 

Hence, in that range the spectrum consists of overlapping bands which are numbered by N. The states within the bands 

are characterized by the propagation vector kt. We illustrate this in . According to Equ. (6.4) the energy 

spectrum is determined, as a whole, by ε, which depends on the parameters U0 and d.  

In  we also give the density of states with respect to energy, g ( E ), (compare Section 1.4). In the subband region 

g(E) shows a step-like behaviour. Approximately, each subband makes a constant contribution to g ( E ) ("two-
dimensional density of states").  

The results of ε calculations [20] are compiled in . In this Figure the quantity ε / E0 is plotted against the quantity 

U0 / E0 (the latter on a logarithmic scale). Here one uses the nomalization energy  

(6.6)     E
0
 = (h2/2m

c
*) (π / d)2 

 

The lower subband edges εN are indicated by ; the boundary to the continuous region ε = U0 is marked by . To get 

the spectrum for a given U
0
 (and a given E

0
), one has to move, at the corresponding abscissa value, upward starting from 

the ordinate value 0 (e. g. ). Hereby one obtains a series of subbands, before passing the boundary to the continuous 

region ε. The number of subbands (number of discrete box-levels ε
N

) decreases with decreasing U
0
 (starting point shifted 

to the left).  
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Let us now consider the dependence on the well diameter d at a given U0. This dependence is contained in in the 

expression for E0 (Equ. (6.6)). With decreasing d, one moves to the left on the abscissa axis, so that the number of εN 

decreases. Simultaneously, the growth of E0 leads to an increase of the εN (due to ε = (ordinate ε/E0) * E0).  

All these results correspond to expectation , remembering the behaviour of the quantum-mechanical states in a potental 
box [13].  

A particularly simple situation - in mathematical respect - is found in the case of infinite offset (box with infinitely high 

walls), which is shown on the right-hand side of the Figure. The corresponding formulae ( ) are often used 
for making estimates.  

For U
0
 tending to zero, we return to the case of a homogeneous material. A corresponding extrapolation in Fig. 6.5 yields 

a single conduction band without substructure, its minimum energy being ε = 0, as expected. Then, the total energy E 
(Equ. (6.5)) also has a minimum value of 0. On the other hand, for U0 values different from zero, the minimum of the 

spectrum (minimum of the N = 1 subband) lies at positive energy values. This phenomenon is referred to as confinement 
effect. Obviously this effect grows with increasing U

0
 and decreasing d, as also expected from the properties of the 

potential box.  

This effect may be attributed to the uncertainty relation of quantum mechanics ∆p ∆z > h. The localization to a range of about 

d occurring compared with the homogeneous case (infinite ∆z ) , leads to an uncertainty of the quasi-momentum in z 

direction, ∆p. That means, in particular, that the quasi-momentum no longer can assume a zero value, i. e. that the minimum 
energy possible increases.  

For instance, for A = GaAs, B = Al0.3Ga0.7As, m*c = m*c(GaAs) = 0.067 m0, U0 = 245 meV, d = 10 nm one obtains a 

confinement of about 25 meV.  

Among other things, the confinement effect results in an increase of the minimum photon energy for interband transitions 
in the well region, compared with the homogeneous case. This has important consequences for optoelectronic 
applications (Section 6.4).  

6.1.3 Valence Band States  

For these states the situation is much more complicated, because we have to deal with two bands which are in contact in 
the homogeneous case (Fig. 6.2). In the case of the layer systems the contact is removed and the corresponding 
wavefunctions become "mixed". This is mainly due to the lowering of symmetry compared with the homogeneous case. 
Among other reasons, contributions to this effect are generally made by the mentioned mechanical deformations which 
have low-symmetry (uniaxial) components. The effects on the valence band spectrum depend, in a detailed manner, upon 
the properties of the combined materials, and cannot be described, as before, by two parameters (offset and effective 
mass).  
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In  we show a calculation [21] of the valence band spectrum for the case A = GaAs, B = Al0.25Ga0.75As, with d 

= 20 nm. The energies are represented, as before, as a function of a propagation vector kt
 parallel to the interfaces in the 

vicinity of kt = 0 (normalized to 2π / a, a = average lattice constant of the homogeneous materials, kt|| [110]).  

The subbands exhibit a rather complicated kt
 dependence. In spite of the mixing effects mentioned, they can be still 

assigned to the original band components HH and LH (Fig. 6.2) and are correspondingly labelled. The energy of the 
upper valence-band edge for homogeneous A type material is nomalized to 0. The confinement effects for holes 
(downward shift) is larger in the LH case than in the HH case. This trend can be attributed to the different effective 
masses, being consistent with the mass dependence of the energy levels of the potential box [13].  

Strictly speaking, the results given in Fig. 6.6 do not refer to simple quantum wells, but to so-called superlattices, i. e. a 
combination of many (about 70 in the present case) A nnd B type layers which are arranged periodically in the z 
direction (Section 6.1.4).  

6.1.4 Superlattice States  

Using epitaxy techniques, one is able to produce layer systems which consist of stacks along the z axis including a large 
number of alternating A type and B type layers. If all A layers - among themselves - and all B layers - among themselves 

- have the same thickness, dA and dB, respectively ( ), a periodic structure is obtained which constitutes a three-

dimensional lattice, in the sense of our earlier definition . Such a structure ( typically including 50 to 100 A and B type 

layers) is referred to as a superlattice. If dA and dB are chosen to be some 10-6 cm (10 nm), the diameter of the unit cells 

of the superlattice in z direction is of the same order (length of the corresponding primitive lattice-vector aSG = dA + dB), 

the dimensions in the perpendicular directions being of the order 10-8 cm, as before .  

  

This periodic structure gives rise to a periodic potential which can be represented by a combination of potential boxes as 
shown in Fig. 6.7. Now the electrons are able to tunnel from well to well ( ). If the barrier thicknesses dB are small 

enough, states delocalized in the z direction (χSG ) also arise in the case ε < U0 instead of the localized states (χN shown 

in Fig. 6.4). Thereby the discrete box-levels εN change into bands which, however, have very small widths, of typically < 

some meV for the lowest bands. The main effect on the energy spectrum as a whole (E, see Equ. (6.4)) involves some 

broadening of the lower subband edges. We show this effect in , making use of the density of states g ( E ). The 
broadening has maximum magnitude for the highest subbands, since the probability of tunnelling increases as the upper 
edge of the barriers is approached.  
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These phenomena are similar to the effects which occur when composing a simple crystal out of atoms (see the discussion in 

) .  

The main reasons for producing and investigating superlattices include planned -or already realized- applications, beyond 
the possibilities that can be achieved with simple quantum wells or a small number of combined quantum wells ( e. g. 
applications based on electrooptical effects). Moreover, experiments are often performed with superlattices having 
relatively large barrier thicknesses, because the effects of the individual wells add up and, consequently, can be measured 
with greater accuracy.  

6.2 Interband and Exciton Transitions 

We shall now discuss transitions between valence and conduction bands and the corresponding spectra - including their 
modification by exciton effects - referring again to the simple quantum-well. First we shall consider upward transitions 

for the case (Fig. 6.9) that the well is irradiated with photons of energy hω in the direction perpendicular to the interfaces. 

Interband transitions can take place, if hω is at least equal to the separation beween the lowest conduction subband and 
the highest valence subband.  

  

It is found that there is a selection rule for the propagation vector kt (consequence of the translation symmetry in the 

directions parallel to the interfaces),  

(6.7)     ∆kt = 0, 

 

i. e. transitions can only occur between valence band and conduction band states having the same kt. We illustrate this in 

a E(kt) diagram which we obtain by combining a valence band diagram as Fig. 6.6 with a conduction band diagram as 

Fig. 6.4 (see ). The transitions are represented according to Equ. (6.7) by vertical arrows . We have only 
drawn transitions between subbands with the same N-value, because these usually possess the highest probability.  
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We now show what kind of absorption spectrum we should get for a typical structure of the type considered (A = GaAs, 
B = Al0.3Ga0.7As, d = 10 nm). We may expect that the spectrum consists of contributions of the combined densities of 

states of the valence bands and conduction bands involved in the the transitions ( Equ. (2.17)), as in the homogenous 
case.  

We shall assume - starting from the properties of the simple density of states g ( E ) (Fig. 6.4) - that in the present case 
each subband combination gives rise to a step with a subsequent near constant behaviour . Thus we obtain a spectrum as 

represented in  ( ). The assignment to the transitions ( Fig. 6.10) is given. It should be noted that the energetic 
separations in Fig. 6.10 are not drawn to scale, and that the system parameters in the two Figures are somewhat different. 

Since we are concerned with an optically inhomogeneous system we cannot describe the spectrum by an absorption 

coefficient α. Therefore we return to the transmittivity T ( Appendix 1), which is the directly measured quantity, plotting log 

(1/T) versus hω (in the homogeneous case log (1/T) is often approximately proportional to α).  

In addition to the expected spectrum  shows an experimental spectrum [22] ( , shifted, for clarity, in vertical 
direction), which has been measured on a corresponding superlattice (50 periods, dA = dB = 10 nm). It differs 

qualitatively from the expected picture, in showing lines instead of steps, which broaden with increasing N. The lines are 
due to transitions into exciton states, that are based on one-particle states corresponding to the edges of conduction-
valence-band combinations (analogously to the case of homogeneous materials, Section 5.1). The electrons and holes 
constituting the excitons are localized in the A regions (in the same A region in the case of superlattices). Since the well 
dimensions are typically comparable with the exciton radius of the corresponding homogeneous material the exciton is 

compressed in z-direction, as already suggested in . This has two consequences:  

� When the charge densties of electron and hole approach, the Coulomb attraction and, hence, the dissocation 
energy ED are increased. This leads to a larger stability of the exciton states with respect to temperature growth 

and the action of electric fields. Due to the first property, exciton absorption lines are still distinctly visible at 300 
K, in contrast to macroscopic GaAs (Fig. 5.7) . The second property is the basis of (future or already realized) 
applications of quantum wells for light modulation. The confinement effect is quite evident in Fig. 6. 11; the low-

energy limit of the spectrum in the homogeneous case has been marked by  in this Figure.  
� The transition probability for the generation of excitons increases due to the growth of the corresponding 

transition matrix elements. ("It is easier to create an excited state of the system, if the electron and hole states 
overlap more strongly".)  
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The broadening of the exciton lines which occurs with growing energy (Fig.6.11) probably originates from the 
broadening trend in the subband edges of the superlattices ( Fig. 6.8).  

We conclude with some remarks concerning downward transitions which are observed in photoluminescence spectra. 
If a quantum-well structure is irradiated with photons whose energy is larger than the bandgap of the B-material(see 

), excitation transitions  leading to the creation of high-energy electron-hole pairs take place. In the present 
case the relaxation ( ) mainly results in a collection of the two kinds of particles in the wells, whereby electrons and 
holes end up in the corresponding subbands and finally, sometimes, in exciton states. This is followed by radiative 

recombination ( ) or radiative annihilation. Due to the collection effect the luminescence yield is usually increased 
compared with that of homogeneous material:  

� The "meeting probability" of electron and hole as well as the probabilities of radiative recombination/annihilation 
greatly increase due to the approach of the two particles (see also the previous remarks on the behaviour of 
upward transitions).  

� The structures produced by epitaxy usually have excellent crystallographic quality - epecially in the well regions - 
which decreases the rates of undesired types of downward transitions near lattice defects.  

Of course the confinement effect is also reflected in the photoluminescence spectra. Here exciton annihilation processes 
are dominant over electron-hole pair recombination, more distinctly than for homogeneous systems; this is mainly related 
to the high ED-values.  

6.3 Intersubband Transitions 

Transitions between conduction subbands or valence subbands can occur, if varations in the degree of occupation are 
produced within the well regions by doping with donor and acceptor impurities, respectively. In the following we 
consider upward transitions between conduction subbands for the case in which the N = 1 subband is partly occupied 
with electrons due to thermal ionization of shallow donors (Fig. 6.14). The kt selection rule Equ. (6.7) is valid also in this 

case. So, e. g. transitions to the the N = 2 subband are possible (  ) .  

Owing to the energy relation Equ. (6.5) we get a vertical subband separation independent of kt, i. e. we expect one 

absorption line at  

(6.8)     hω = E2 - E1 = ε2 - ε1. 

 

 shows experimental absorption spectra [23] referring to two GaAs-Al0.3Ga0.7As-superlattices with different dA 

values (6.5 and 8.2 nm) (50 periods, dB = 10 nm in both cases, wells doped with Si donors). For clarity the spectra are 

vertically shifted relative to each other. The dominant absorption line is attributed to subband transitions of the type of 
Equ. (6.8) in each case. In addition, there are weaker lines about 88 and 96 meV in both cases, which are due to phonon 

transitions (multiphonon processes, Section 8.3) . As to be expected, the intersubband peak is located at higher hω in the 
case of the 6.5 nm sample.  
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The observed positions of these peaks are obtained, to some approximation, using Fig. 6.5, Equ. (6.6) and Equ. (6.8) 
together with the offset value U0 = 245 meV for the present material combination (E0 = 132 bzw. 83 meV and referring 

to the mc* value (0.067 m0) of GaAs).  

An experimental problem is due to the fact that intersubband transitions can be observed as electrical dipole transitions only if 
the incident light has a polarization component perpendicular to the interfaces (parallel to the z-axis). That means that in the 
usual configuration as represented in Fig. 6.9 absorption of this kind is not visible because of the transversal character of the 
radiation. To avoid this problem obliquely instead of normally incident light is used in the experiments. Then - especially if 
incidence under the Brewster angle is employed - the electric field of the radiation has a significant z- component.  

Unlike the case of homogeneous material we are dealing here with transitions between states which are induced merely 
by the interaction with photons, and do not require the participation of additional interaction partners (compare Chapter 
4). Consequently, the transition probabilities ( in the suitable geometric configuration) are relatively high. In particular, 

this refers to the N = 1 → 2, transitions discussed earlier, which can be illustrated by the fact that the change of the 

wavefunctions χN(z) ( Fig. 6.4) is accompanied by a large change of the electric dipole moment.  

Of course, the transition probabilities of the corresponding radiative downward transitions are high, too, in particular for 

the backward processes N = 2 → 1, where the relaxation times are of the order 10 - 13 s. The observed linewidths (Fig. 
6.15) mainly originate from lifetime broadening.  

It should be noted that at high photon energies upward transitions from the subbands to the continuum levels above U
0
 

("ionization transitions") are possible. These transitions, which involve the generation of mobile carriers, may become 
the basis for the development of infrared photodetectors [23a].  

6.4 Semiconductor Lasers 

As already mentioned in Section 2.7, the semiconductor lasers currently employed are mainly based on quantum well 
structures.  

Let us explain the principle of operation using Fig. 6.16, which is a modification of Figures 6.1 and 6.13. Here the B -  
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regions are assumed to be doped with "shallow" donors or acceptors. At environmental temperature these regions show 
n-type and p-type conduction, respectively, due to thermal ionization. Because of the gradients of the carrier 
concentrations existing between the B-regions on the one hand, and the A-regions on the other hand, electrons and holes 
partly undergo diffusion into the A-regions. Thereby the diffusion is slowed down through the action of the opposite  

space charge originating from the impurities (positive charge of the donors acting on electrons, negative charge of the 
acceptors acting on holes).  

          

If electrodes are deposited upon the B-regions and an electric voltage of the polarity shown in Fig. 6.16 (forward 
direction) is applied, we are concerned with an additional collection of carriers (injection); these can recombine 
radiatively. (Generally, there are also exciton annihilation transitions.) As a consequence, we are dealing here with 
electroluminescence. In the presence of sufficiently strong injection, population inversion may occur, and - if by suitable 
surface treatment the structure is made to obtain resonator properties - laser action is possible.  

The efficiency of such systems is considerably higher than for lasers based on simple p-n junctions (see Section 2.7). The 
most important advantages are:  

1. Low threshold current and high emission yield: Due to the small well diameters, the rates of the radiative 
recombination / radiative annihilation are large, while the rates of undesired competitive processes occurring at 
defects are small (owing to the perfection of the epitaxial material), see our remarks in Section 6.2 concerning the 
luminescence yield. The collection effect leads to to a population inversion starting already at low injection 
current. Furthermore, there are favourable conditions because, due to the different Eg values, the refractive index 

in the A-regions is usually higher than in the B-regions, thus concentrating the radiation field in the A-regions.  
2. The laser wavelength can be varied within wide limits by changing the well diameter d (changing the 

confinement energy). In particular, a decrease of d results in a decrease of the laser wavelength. For instance, one 
can reach the visible spectral range in the case of a GaAs well (about 0.7 µm, to be compared with about 0. 9 µm 
for homogeneous GaAs).  

A further phenomenon which is favourable for the achievement of population inversion and laser effect, is the energetic 
concentration of "laser active" states. This phenomenon is due to the decrease of the active region, i. e. to the fact that we 
are concerned here with a near-two-dimensional system. This result suggested experiments attempting to obtain further 
improvements by going to systems with one or zero dimension [18,19], which typically have diameters of some nm in 
two and three dimensions, respectively. Such systems are referred to as quantum wires and quantum dots, respectively.  

As shown in  a decrease of the number of dimensions (2D - 1D - 0D) leads to an increase in the spectral 
concentration of the optical transitions. We illustrate this with the help of schematic pictures of absorption spectra, as 
expected from the corresponding combined densities of states ( Section 6.2, ignoring exciton effects). As far as quantum 
dots are concerned we approach the case of big molecules, which manifests itself in the line type character of the 
spectrum. To exploit these possibilities, one needs procedures for the production of systems containing a large number of 
quantum wires or quantum dots with -if possible- the same dimensions (note that the desired effects are strongly 
disturbed by deviations of size, due to the size dependence of the confinement energies). At present intense efforts for 

solving these problems by means of epitaxy techniques ( ) are under way.  
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Chapter 7 

Lattice Vibrations and Phonons: Basic Concepts 
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After this excursion to the field of quantum structures, we shall now deal again, in the two final chapters, with processes 
in homogeneous crystalline materials, more specifically with phonon processes.  

To understand the corresponding optical transitions, it is necessary to be familiar with the vibrational properties of crystals. 
However, as experience shows, most students do not have a good knowledge in this respect. This is partly because the general 
mathematical treatment (involving equation systems with many indices) is deterrent at first sight . Therefore, in lectures, 
oversimplified kinds of presentation (e. g. restriction to linear chain models) are often employed. On the other hand. the 
consequent treatment of vibrational states is conceptually no more difficult than the treatment of electronic states. In view of 
this situation, we shall give an analysis of that matter in the present Chapter, restricting ourselves to the basic ideas (a detailed 
discussion may be found e. g. in [3]).  

The vibrational states will be treated using a model which does not have a direct connection with our earlier discussion of 
electronic states (Section 1.2) . In this model it is assumed that the crystal consists of particles ("atoms") having certain 

masses, which are - to some extent - mobile and that certain forces are active between them .  

The existence of these forces has the following consequences:  

� There is a certain equilibrium configuration of the atoms corresponding to the minimum of the potential energy of 
the system (starting point of the discussion in the previous Chapters).  

� The forces have restoring character, i. e. the atoms are able to perform vibrations around the equilibrium 
positions.  

For the moment we admit forces of any range (Fig. 7.1, ) . These vibrations are referred to as lattice vibrations, 
although, what is meant is not a motion of the lattice, but of the individual atoms.  

Strictly speaking, there is no precise definition of the term "atoms" in solid state physics, since the electrons cannot be 

assigned to a definite atomic nucleus (nonlocalized electronic wavefunctions ψ
kν (r), see Section 1.2). The vibrations actually 

involve motions of the nuclei, in which the electrons are partly "dragged away". This effect, which involves changes of the 
wavefunctions, can be taken into account in more detailed theoretical treatments [24]. The results include a determination of 
the "force constants" to be introduced later.  

7.1 Classical Description 

Understanding the subject is made relatively easy by the fact that many vibrational properties can be discussed in 
classical terms. 

  

Let us first introduce displacements of the atoms from their equilibrium positions, u n k, as illustrated in . The 

indices n and k are used to number the unit cells in the crystal and the atoms in the unit cell, respectively. Then the 

potential interaction energy of the atoms is a function of the cartesian components u 
n k α

 of the atomic displacements (α 

= x,y,z). We denote this function by Φ(u) (u totality of the u n k α
) and expand it into a Taylor series around the 

equilibrium positions u n k α
 = 0. Taking into account that in this case the first derivatives are zero, there are no first-order 

terms , and we get  

  

As usual, we have omitted all terms of higher than second order, i. e. we are working in the so-called harmonic 
approximation. This name originates from the fact that the characteristic vibrations obtained on this basis are harmonic 
vibrations (pure sine and cosine type vibrations, as explained later).  

The second derivatives are considered as parameters ("force constants"); we shall denote them by  
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By calculating the first derivative with respect to the u's, of Equ. (7.1), and changing signs we obtain the forces active in 

a certain configuration of displacements. This leads to the equation of motion for the atom nk in α direction:  

  

Mk is the mass of the atoms of type k. The right-hand side of this equation gives the sum of the forces originating from 

the atomic displacements.  

The double summation over the three types of indices in Equ. (7.1) can be replaced by a single summation taking into account 
that in the sum all pairs of atoms are counted twice, then the factor 1/2 disappears.  

We are interested in normal vibrations (also referred to as normal modes ), i. e. vibrations having a definite frequency ω:  

(7.4)     u 
n k α

 (t) = v 
n k α

 exp(i ω t) 

 

Entering into Equ. (7.3) , we obtain an equation system for the v n k α
: 

 

  

This system consists of a big number of equations (three times the number of atoms in the crystal). However, this system 
can be transformed to a system of very few equations making use of the presence of translation symmetry. To get this 
result we choose the relation  

(7.6)     v n k α
 = (Mk)-1/2 w k α

 exp(i q Rn) 

 

as the starting point. The w's are amplitude factors that are independent of n. The Rn are lattice vectors; the quantities q 

are propagation vectors characterizing the desired wave-like solutions. More precisely, we are looking for solutions 
which have the same structure as Bloch waves (solutions of the electronic problem): A prefactor that is independent of 
the cell index n, i. e. having the periodicity of the lattice (corresponding to the Bloch factor) and a wave-type factor.  

This choice leads to a system of equations for w 
k α

: 

 

  

Although the index n appears explicitly on the right-hand side of Equ. (7.8) , the quantities D k α k' α' are n - independent 

in the case of a sufficiently large crystal. This is a consequence of translation symmetry (see ). This result 
implies that the Bloch - type relation (7.6) with n - independent w's is justified. Hence, in (7.7) we are dealing with a 
system of only a few linear homogeneous equations, which can be treated using the familiar algebraic procedure. 
Denoting by r the number of atoms in the unit cell, we are concerned with 3r equations. These equations can be written in 
matrix form:  

(7.9)     ω2 w = D(q) w 

 

Here w is a three-dimensional vector with the components w k α
 and D(q) is a 3r × 3r matrix with the elements Dk α k' 

α'(q), which is referred to as dynamical matrix. Equ. (7.9) is an eigenvalue equation, i. e. an equation for determining the 

eigenvalues ω2 and the eigenvectors w. The first quantity gives the frequencies, the latter the amplitudes and the 
directions of the vibrations.  

Hence the vibrational behaviour of a given crystal is determined by its dynamical matrix. According to Equ. (7.8) this matrix 
depends, for definite q, on the masses of the atoms (which are well known) involved and the lattice vectors Rn (which can be 
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obtained from X - ray structure data). The force constants are unknown quantities that can be determined, if necessary, by 
fitting to experimental data. However, many general results can be deduced without a knowledge of the specific values of the 

φ's.  

The eigenvalues are obtained by solving the secular equation  

(7.10)     det[D(q) - ω2 E] = 0 

 

(E is the 3r × 3r unit matrix). It can be shown that this equation always has 3r real and positive solutions. Denoting these 

by ωj(q)2 (j = 1,...3r) we get the same number of eigenfrequencis ωj(q). If q is varied, each of these functions covers a 

certain range for each j, i. e. the frequency spectrum consists of 3r vibrational branches (bands). As in the case of the 
electronic propagation vectork, q can be limited to the Brillouin zone (Section 1.2). According to the procedure 
described in that Section, we are concerned, of course, with the same Brillouin zone as in the electronic case.  

Two additional general properties are important:  

� In each case, there are three branches for which ωj(q = 0) = 0; these are called acoustic branches. 

 

� The ωj(q) are even functions of q, i. e. one has ωj(- q) = ωj(q).  

If there is more than one atom per unit cell, we are concerned, in addition to the acoustic branches, with 3r - 3 further 
branches (optical branches).  

Let us now discuss the vibrational configurations . In view of Equ. (7.4) and (7.6) these are given by the expressions  

(7.11)     (M
k
)-1/2 w 

k α
(q, j) exp(iq Rn

) exp(iω
j
(q)t). 

 

Here one has to use eigenvectors and eigenfrequencies, i. e. one is dealing with running waves (Bloch - type waves) with 

a propagation vector q, which determines the wavelength (= 2π / |q|) and the direction of propagation. Thereby each 

atom is vibrating with the same frequency ωj(q), while the phases and amplitudes are, in general, different. The vectors 

(w k x,w k y, w k z) are directed perpendicular and parallel to q, in the cases of "transverse" and "longitudinal" vibrations, 

respectively.  

  

Thus the spectrum of eigenvalues and the structure of the vibrational states are similar to the energy spectrum and the 
structure of wavefunctions, respectively, in the electronic case. An important difference lies in the fact that there is only a 
finite number of bands in the case of the vibrations.  

Now we consider materials with two atoms per unit cell, in particular materials with diamond, zincblende, or rocksalt 

structure . In  we qualitatively represent the functions ωj(q) along a straight line in the Brillouin zone passing 

through q = 0 (compare Fig. 1.3)  

The acoustical branches (one longitudinal (LA) and two transverse (TA)) and the optical branches (also one longitudinal 

(LO) and two transverse (TO)) are indicated. The picture refers to a high-symmetry direction in q space (e. g. Γ - L), 
where the transverse branches coincide.  

In Fig. 7.2 the TO and LO branches are separated at q = 0. This is found for all materials having a polar component of binding 
(different types of atoms). In the absence of polar binding (only one type of atoms as for the diamond structure) the optical 
branches are in contact at this point.  

The maximum values of ωj(q) typically are of the order 1013 to 1014 s-1. 

 

In a crystal of finite size the realizable q vectors form a fine-mesh network in the Brillouin zone , analogously as the k  
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vectors in the electronic case ( ). Ignoring this fine structure, it can be stated that each point in a diagram as  

Fig. 7.2 corresponds to a normal vibration.  

 

In  we illustrate the TO and LO vibrational configurations for a crystal with two atoms per unit cell (schematic 
picture). These are "snapshots" of the patterns of atomic displacements within the range of half a wavelength. The 
different vibrational phases are evident. As time goes on, the pattern moves in q direction, whereby the displacements of 
the individual atoms vary periodically (Equ. (7.11)) . It is a characteristic feature of the optical vibrations, that in every 
unit cell the displacements of the two types of atoms are opposite. Because of the opposite charges of the atoms ("ions") 
an electrical dipole moment results in each unit cell. As a consequence, a direct interaction with electromagnetic 
radiation can occur (see Section 8.2 for details) . This is the reason for referring to these vibrations as "optical 
vibrations". In contrast, the displacements within the unit cell have the same direction in the case of acoustic vibrations. 
The latter name originates from the fact that at large wavelengths (small |q|) these vibrations turn into sound waves 
(audible frequencies).  

7.2 Quantum Mechanical Description: Oscillator Picture 

We start with the Hamilton operator of the system of atoms, accepting Equ. (7.1) and (7.2) for the potential energy and 

putting Φ(0) = 0 (normalization of energy),  

  

Note that the u's are now operators; the p's are the momentum operators canonically conjugate to the u's . Because the 
potential energy contains terms of second order in the coordinates, Equ. (7.12) reminds us of the Hamiltonian of a system 
of harmonic oscillators. By means of a coordinate transformation we can arrive at an expression including only pure 
quadratic terms:  

  

V0 and V are the volume of the unit cell and of the crystal, respectively; the Q 
q j are the new coordinates (normal 

coordinates). The quantities in square brackets correspond to the classical normal vibrations (compare Equ. (7.11)).  

In Equ. (7.13) we consider eigenvectors w normalized to unity (dimensionless quantities). As a consequence, the dimension of 

the Q's is (mass1/2 × length), and the u's have the dimension of lengths, as should be the case.  

Each normal coordinate is assigned to a normal vibration. The transformation yields  

  

The P
q j

 are the momenta canonically conjugate to the Q
q j

. In deriving Equ. (7.14) we have made use of Equ. (7.7) and 

(7.8).  

Obviously Equ. (7.14) is the Hamilton operator of a system of harmonic oscillators (of unit mass), each oscillator being 
assigned to a normal vibration (i. e. to a point in a diagram of type Fig. 7.2). The frequencies of the oscillators agree with 
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the frequencies ωj(q) of the normal vibrations. Thus, by introducing normal coordinates, we have transformed the real 

physical system of coupled atoms into a system of uncoupled harmonic oscillators. The oscillator picture enables one to 
discuss, in a transparent manner, the processes connected with lattice vibrations.  

We write the Schrödinger equation corresponding to the new Hamilton operator in the form  

(7.15)     H |....., l
q j,.....> = Wl |....., lq j,.....>           l

q j = 0, 1, 2,..... 

 

We characterize the state of the system by numbers which indicate the state of the individual oscillators (ground state l
q j 

= 0, excited states l
q j > 0). Wl are the corresponding energy eigenvalues (l = totality of the l

q j ):  

  

Since we are concerned with uncoupled oscillators, Wl is given simply by the sum of the contributions of the individual 

oscillators (see e. g. [13]):  

7.3 Quantum Mechanical Description: Phonon Picture 

There is a further possibility of describing lattice vibrations, viz. - as costomary now - by a system of particles. In order 
to introduce this picture, we start from Equ. (7.16), in a somwhat rewritten form:  

  

The dependence on the vibrational state is determined by the first term. The second term ("zero-point energy") , which is 
a constant for a given material, will be ignored in the following. We can reinterpret Equ. (7.17): We can assume that we 
are dealing with a system of particles without mutual interaction (phonons) which are able to occupy particle states (q j). 

The energies of the states (phonon states) are given by hω
j
(q), their quasi-momenta by hq,; the l

q j
 are corresponding 

occupation numbers. We can illustrate this situation by assuming that the curves in diagrams of the type Fig. 7.2 

(ordinate multiplied by h , ) are occupied with such particles.  

  

The total energy of the system is obtained with the help of Equ. (7.17), by multiplying the energies of the phonon states 
(q j) with the numbers of the phonons residing there and summing over the energies thus achieved. According to this 
new interpretation, the state of the system |....., l

q j
,.....> ( Equ. (7.15)) is specified by the occupation numbers for all 

phonon states (q, j).  

We can give a " portrait" of a phonon, using, as an example, Fig. 7.3: If there is only one phonon in the corresponding state, 
the atoms are vibrating in the way shown in the picture, with minimum total energy (ignoring the zero-point energy).  

We now refer to the hω
j(q)- curves (compare Fig. 7.4) as phonon dispersion curves. (We have used a similar Figure in 

 when discussing indirect interband transitions.) The maximum hωj(q) values typically are of the order of 

several ten meV.  

The phonon dispersion curves are an analogy of the electronic band structure functions E
ν
(k). Sometimes it is useful to 

introduce a phonon density of states similarly to the electronic density of states. This is obtained in a manner analogous to 

Equ. (1.13), replacing k by q, ν by j, and E
ν
(k) by hω

j(q). The factor before the integral is now 1 / 8π3.  
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In experimental studies there is usually no information about the individual occupation numbers l
q j, but only about 

average occupation numbers present in thermal equilibrium. These are given by a Bose-type distribution function:  

(7.18)     <l
q j>(T) = (exp[hωj(q)/kBT] - 1)-1 

 

where T is the measurable crystal temperature defined by this distribution. Since, according to their introduction (Section 
7.2) the values of l

q j are not restricted to a finite range, the phonons may be regarded as Bose particles.  

The mathematical formulation adequate to the phonon picture is obtained by means of an additional coordinate 
transformtion. We introduce new dimensionless coordinates b

q j by:  

(7.19)     Q
q j

 = [h/2ω
j
(q)]1/2 (b

q j
 + b

-q j
+) 

 

(7.20)     P
q j = i[hω

j(q)/2]1/2 (b
q j

+ - b
-q j) 

 

As usual, the symbol + refers to adjoint operators. There are no momenta canonically conjugate to the new coordinates. 
The corresponding transformation of the Hamilton operator Equ. (7.14) gives  

  

The quantities b
q j

+ and b
q j have the properties of creation and destruction operators, respectively, such as introduced for 

the treatment of many-particle systems in the second-quantization formalism [13]. Denoting the state of our system, as 
before, by |....., l

q j,.....>, we have  

(7.22)      b
q j

+ |....., l
q j,.....> = [l

q j + 1]1/2 |....., l
q j + 1,.....> 

 

(7.23)     b
q j |....., lq j,.....> = [l

q j]
1/2 |....., l

q j - 1,.....> 

 

i. e. , apart from prefactors, the result is a state of the system with one phonon more and less, respectively, in the phonon 

state (q j) (indices of b+ and b), while the phonon numbers in the other states remain unchanged. The combinations b
qj

+ 

b
q j appearing in Equ. (7.21) are so-called particle-number operators, whose eigenvalues are l

q j. The energy eigenvalues 

of the system are therefore, as to be expected, given by Equ. (7.17). Apart from the zero-point contribution, Equ. (7.21) 
corresponds to the general form of the Hamilton operator for a system of non-interacting particles obtained in second 
quantization [13].  

7.4 Summary  

In the following Table we make a comparison of the three kinds of describing lattice vibrations presented in the 
preceding Sections.  

coordinates                           picture     (q, j) characterizing               meaning of the ωωωωj
(q)

      u n k α                 coupled atoms classical eigenvibrations                     frequencies

         Q
q j           non-coupled oscillators              oscillators frequencies or (1/h)×energy steps

  b
q j

+, b
q j

 non-coupled particles = phonons           phonon states             (1/h)×phonon energies
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8.1 Interaction of Phonons with Radiation  

We now discuss the change of the vibrational state of the crystal (change of the number of phonons) induced by 
monochromatic electromagnetic radiation (Fig. 8.1). As in our earlier treatment of electronic transitions, we start with a 

classical radiation field (frequency ω), considering transitions between states of the system, in the present case states of 
the phonon system. More exactly, we regard transitions between an initial state |i> and a final state |f> of the system, 
specified by phonon occupation numbers :  

(8.1a)     |i> = |....., l
q j

,.....i> 

 

(8.1b)     |f> = |....., l'
q j,.....i> 

 

  

Then, in general, the transition probability is given, analogously to the electronic case ( Equ.(2.4)), by  

(8.2)      P = ( 2 π / h ) |< f |Hpr| i >|2 δ ( Wf - Wi + hω ) 

 

Hpr is the interaction operator between the phonon system (p) and the radiation field (r) . Wf and Wi are the energies of 

the states |f> and |i>, respectively (compare Equ.(7.17)). The + sign in the argument of the δ functio takes into account 

that, in addition to transitions with the absorption of radiation (Wf > Wi , hω = Wf - Wi), processes with the induced 

emission of radiation (Wf < Wi , hω = Wi - Wf) can occur. We shall return to this point later on.  

We shall use the dipole approximation for the interaction with the radiation field  

(8.3)     Hpr = - M E0 

 

Here M is the electric dipole moment of the crystal produced by the displacements of the atoms and E0 the amplitude of 

the electric field of the elctromagnetic wave.  

Thus, M depends on the atomic displacements unk. In the case of vanishing displacements we have M = 0; for small 

displacements we expect small magnitudes of M. Therefore, it is reasonable to make a Taylor expansion with respect to 
the unk ; we write symbolically  

(8.4)     M = { u } + { u u' } + { u u' u'' } + ..... = M1 + M2 + M3 +..... 

 

The symbols { } stand for sums containing terms of first, second, and third order in the unk, respectively (sums over 

nkα). We refer to the contributions M1, M2 and M3 as first, second and third order dipole moments , respectively.  

Obviously, first-order dipole moments result from the displacement of atoms having an excess charge ("ions"). Thus an 
atom with the excess charge Q displaced by unk makes the contribution Qunk. Such contributions can only occur in 

substances consisting of different kinds of atoms, i. e. in so-called polar materials. Higher-order dipole moments are 
found for all substances including substances which consist of only one type of atoms (non-polar materials). As 

illustrated in  these are due to the fact that the electron charge distribution is not rigidly coupled to the motion of 
the nuclei (o), but is deformed during the displacement (deformation of the electron shell and exchange of charge with 

neighbouring atoms ( )). These effects are also dependent on the displacements of the neighbouring atoms, so one is 
dealing with contributions of displacements of several atoms.  

  

It is appropriate to use, instead of the atomic displacements, the coordinates b
q j

+ and b
q j

 corresponding to the phonon 

picture . Since there are linear relationships between the u's and the b's (compare Equ.(7.13), (7.19) and (7.20)), the new 
series expansion has a struture analogous to Equ. (8.4):  
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(8.5)     M = M1 + M2 + M3 +..... 

 

M1 = { b
q j

+ } + { b
q j } 

 

M2 = { b
q j

+ b
q' j'

+ } + { b
q j

+ b
q' j' } + { b

q j bq' j'
+ } + { b

q j bq' j' } 

 

M3 = { combination of three-b terms } 

 

We have now used symbols { }, similarly as in Equ. (8.4). In the present case, these stand for sums over q j and q j, q' j', 
respectively. Here the expansion coefficients are three-dimensional vectors.  

8.2 First-Order Dipole Moment / One-Phonon Transitions 

A dipole moment proportional to the displacements is found for optical vibrations (Fig. 7.3). Here the coupling to 
electromagnetic radiation is restricted to the case in which M1, i. e. also the displacements have components in the E0 

direction (scalar product in Equ. (8.3)) and in which the propagation vector of the vibration (q) agrees with that of the 
radiation (s). Since the radiation has transverse character, i.e. E0 is perpendicular to s, the relevant vibrations are also 

transverse.  

The agreement of s and q can be interpreted, similarly to the cases of interaction treated earlier (e. g Section 5.2) , as 
being due to the momentum balance for collisions in which phonons take part (transformation processes photon - phonon 
in the present case).  

As already discussed in connection with electronic transitions, the magnitude of s is always small against the size of the 
Brillouin zone in the spectral range considered. ( This is the condition for the validity of the dipole approximation Equ. 
(8.3).) Consequently, q is also small and may be assumed to be approximately zero.  

The restrictions described imply that the sums in M1 in Equ. (8.5) are always reduced to a single term, viz. to the term 

with  

(8.6)      q = 0,       j = TO  

in each case. Hence, due to this selection rule, we can write  

(8.7)     M1 = const × b0,TO
+ + const × b0,TO 

 

We replace M in Equ. (8.3) by M1
, insert this in the matrix elements in Equ. (8.2) and take into account Equ. (8.7). We 

obtain matrix elements of the type  

(8.8)     <....., l'
q j,.....|b0,TO

+|....., l
q j,.....> and <....., l'

q j,.....|b0,TO|....., l
q j,.....> 

 

According to Equ. (7.22) and (7.23) we get  

(8.9)     b0,TO
+ |....., l

q j,.....> = [l0,TO + 1]1/2 |....., l0,TO + 1,.....> 

 

(8.10)     b0,TO |....., l
q j,.....> = [l0,TO]1/2 |....., l0,TO - 1,.....> 

 

i. e. apart from the prefactors we are dealing, on the right-hand side, with eigenstates of the phonon system, in which the 
particle states (q = 0, j = TO) contain one phonon more or less, while the occupation of the other particle states 
corresponds to the kets on the left-hand side, i. e. corresponds to the initial state |i> of the system. Thus in the case of the 
matrix elements (8.8) we are concerned with scalar products between system-eigenstates, which, because of the 
orthonormality of these states, are non-zero only if the states combined in the scalar products are identical.  

That means that under the action of M1 transitions occur only if exactly one phonon with q = 0 and j = TO is generated 

or annihilated. Because of the energy balance (argument of the δ function in Equ. (8.2)) we are dealing, in the first case, 

with transitions involving the absorption of a photon ( - hω), in the second case with transitions involving the induced 

emission of a photon (+ hω). In both cases we have  
 
 



 

page 70  

(8.11)     hω = hω
TO(0) 

 

We refer to these two types of processes as one-phonon transitions. These transitions are indicated in the hω
j(q) 

diagram (Fig. 7.4) (see Fig. 8.3a). There is only a single point in this diagram taking part in these processes. Considering 
that the maximum phonon energies are typically some 10 meV, we see that usually, at not too low temperatures in 
thermal equilibrium, the state (q = 0, j = TO) is occupied with some probability (compare Equ. (7.18); k

B
× 300 K is 

about 25 meV). That is why it is really important to allow for induced emission processes ( ) when discussing optical 
properties. (Obviously this is less important in the range of interband and exciton transitions, because the excitation 
energies are much higher in these cases.)  

  

Of course, there are, besides the induced emission, also spontaneous emission transitions, in which phonons are annihilated 
(via one- or multiphonon transitions) and photons are generated. These appear, e. g., in the heat radiation of solids, making 
contributions, in particular, in the middle infrared region.  

In order to keep the presentation transparent, we now introduce a Table, in which we give the previous results of this 
Section:  

On the basis of Fig. 8.3 we expect that the absorption spectrum due to one-phonon transitions, of a polar material with 

two atoms per unit cell, consists of a single line at hω = hωTO(0). We show this in , plotting the absorption 

index κ against hω. There are contributions to the line intensity from absorption processes ( ) as well as induced 

emission processes ( ).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mechanism processes band
momentum 

balance
energy balance

type of 
material

     first-order    
   dipole moment 
             (M1)

     one-phonon 
       processes      

    j = TO      q = 0     hω = hω
TO(0)       polar
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We compare this result in  with experimental spectra of CdTe [25], which have been determined by reflection 

measurements at two temperatures using a Kramers-Kronig analysis. The maximum values of κ are of the order 10. This 

corresponds to ε2 values of some tens and α values above 104 cm-1. These large intensities are comparable to the values 

found for interband and exciton transitions (e. g. Fig. 2.14 and Fig. 5.7).  

In contrast to expectation (Fig. 8.4a), the absorpton lines in Fig. 8.4b have finite widths, growing with increasing 
temperature. We are dealing here with lifetime broadening: After some time, the phonons created in the optical 
transitions transform into other types of phonons. Such processes ("phonon-phonon scattering") are not to be expected on 
the basis of the previous treatment (Section 7.3). As will be remembered, we have been concerned with eigenstates of the 
system having definite phonon occupation numbers l

q j. We shall discuss such processes - which are due to deviations 

from the harmonic approximation - in detail in .  

The shift of the line maximum toward lower energies, which occurs as the temperature increases, originates from the fact 
that the phonon energies are, to some extent, temperature dependent. This phenomenon is also due to anharmonic effects. 

The quantitative pieces of information which can be obtained, by studying the one-phonon absorption line, include:  

� hωTO(0) (from the line position) 

 

� the phonon lifetime τ
TO

 (from the line width) and  

� the so-called effective charge (magnitude of the excess charge) of the atoms Qeff (from the line intensity)  

For a material consisting of two different kinds of atoms ("ions") the effective charges have, of course, opposite sign. As 
Qeff increases , the interaction with the radiation field becomes stronger, and, consequently, the line intensity grows. To 

be more precise, the area under the absorption line (nearly independent of temperature, Fig. 8.4b) is proportional to Qeff
2. 

As an example, we give some values for CdTe: hω
TO(0) = 17.5 meV (corresponding to the peak position of ε2(ω) at low 

temperatures), τTO (90 K) = 3.8 × 10-12 s, Qeff = 0.83e.  

The τTO value is equal to about 16 times the period of a classical (q = 0, j = TO) vibration. The classical analogon of the 

phonon lifetime is the attenuation time of the vibration. The attenuation is relatively weak in the present case, which is a final 
justification of using the harmonic approximation and, consequently, of introducing the phonon concept.  

The Qeff value obtained is very far from the value one would naively expect for bivalent Cd and Te 
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in a corresponding ionic compound. Of course, the reason lies in the modified distribution of electronic charge which strongly 
deviates from the ionic case. (It is well known that this deviation is correlated with the presence of an appreciable covalent 
component of binding.)  

For discussing experimental results, only the corresponding reflection bands are given in many cases. As we are 
concerned here with a single spectrally isolated resonance, we expect that the reflection band is similar to the 
corresponding band deduced from the oscillator model in Appendix 4. There we have to identify the oscillator frequency 

ω
0 with ωTO(0) and to consider - in view of the finite phonon-lifetime - a nonzero attenuation coefficient (γ).  

  

 shows corresponding reflection bands of some III-V semiconductors ( , reflectivity R against hω after [26]). 

The hω
TO(0) values are marked in the Figure. The spectra largely agree with the expected behaviour, in particular, the 

maximum values are close to unity (almost perfect reflection). The grey curves have been calculated from the oscillator 

model [26] (fitting parameters εoo, ω0, A, and γ, compare Appendix 4).  

The reflection band is often referred to as Reststrahlbande. This German term which means "residual ray band" is related 
to the historically first method for spectral decomposition of infrared radiation: After multiply reflecting the radiation 
emitted by an infrared source, at a set of crystals consisting of the same material (NaCl in the historical experiments), the 
part lying in the range of maximum reflectivity will be dominant, i. e. originate from a relatively narrow region of the 

spectrum. (Later on, the strong ω dependence of the refraction index in the range close to the ωTO(0) resonance (Fig. 

A5c) was used for spectral decomposition by means of prisms.)  

8.3 Higher-Order Dipole Moments / Multiphonon Transitions 

As an example of a higher-order dipole moment we discuss here the influence of a second-order dipole moment (M2
). 

The procedure is analogous to the treatment of M1 in Section 8.2.  

We replace M in Equ. (8.3) by M2 (Equ. (8.5)) and insert this into the matrix elements in Equ. (8.2). This results in 

several types of matrix elements including  

(8.12)     <f |b
q j

+ b
q' j'

+| i>, <f |b
q j

+ b
q' j'

| i>, <f |b
q j

 b
q' j'

+| i> and <f |b
q j

 b
q' j'

| i> 

 

Arguments analogous to the considerations following Equ. (8.9) and (8.10) lead to the conclusion that two-phonon 
transitions occur under the action of M2

. More precisely - bearing in mind the matrix elements in Equ. (8.12) as well as 

the energy balance - the following kinds of transitions are obtained  

  

We illustrate these processes in the Figures [a], [b1], [b2] and [c], representing photons and phonons by  and , 
respectively. Obviously, in the cases [a] and [b1 we are concerned with the absorption of photons, in the cases [b2] and 
[c] with the induced emission of photons. Transitions of type [a] und [c] are referred to as sum processes, transitions of 
type [b1] und [b2] difference processes.  
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There are selection rules with respect to the propagation vectors also for two-phonon processes; viz.  

(8.14)     q + q' = 0  

where the + and - signs denote sum and difference processes, respectively. These selection rules can be interpreted as 
momentum balances for the "collisions" of types [a] to [d] (generalization of the collision concept, compare Section 2.1), 
taking into account that the photon momentum (originally on the right-hand side of Equ. (8.14) is negligible. There is no 
selection rule with respect to the bands involved (j, j'). We now show examples of type [a] and [b1] transitions in Fig. 

8.3b ( ).  

  

The dipole moments of higher than second order give rise to corresponding transitions of higher order; the probability of 
such transitions generally decreases wifh growing order.  

Now we supplement our Table which has been set up earler for listing the relevant processes:  

In the following we try to find out what kind of absorption spectrum is to be expected for two-phonon transitions. We 
first consider the case of sum processes, using Equ. (8.13a) and (8.13c), as well as Equ. (8.14) with the + sign. We get  

(8.15)     hω = hω
j(q) + hω

j'(q) 

 

Here we have taken into account the relation ωj'(- q) = ωj'(q) ( see Section 7.1). We represent in  the right-hand 

side of this equation in a schematic picture, along a straight line in q space. Starting fron Fig. 7.4 we have considered 
various combinations of j and j'. According to Equ. (8.15) experiment yields all "two-phonon states" (q, j, j') for which 

the ordinate in Fig. 8.6 is equal to the chosen photon energy hω ("determined by tuning the monochromator"). We have 

included hω with the suitable slitwidth ( ) in .  

          

The absorption spectrum then results essentially from the number of two-phonon states falling into the slitwidth interval,  

mechanism processes band momentum balance energy balance type of material

     first-order dipole 
          moment            
               (M

1
)

  one-phonon processes            j = TO              q = 0      hω = hω
TO

(0)            polar

     second-order dipole 
         moment          
             (M

2
)

   two-phonon processes
             no 
       restriction

           q + q' = 0    hω = hω
j
(q) + hω

j'
(q')    polar and non-polar

                 :                  :                  :                  :                  :                  :
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for the various hω values. In qualitative respect, the following features can be inferred from Fig. 8.6:  

� We are concerned with a continuous spectrum.  

� There is a high-energy limit of the spectrum, viz. at hω = 2 × [hωj(q)] max.  

� The spectrum has structure, because the number of two-phonon states is strongly hω dependent. The number of 

two-phonon transitions that can occur in the slitwidth interval increases with the slope of the functions hω
j(q) + 

hωj'(q).  

The discussion of difference processes is performed in an analogous way. Equ. (8.13b) and (8.14) ( - sign) yield  

(8.16)     hω = hωj(q) - hωj'(q) 

 

On the basis of a diagram similar to Fig. 8.6 we find that the spectrum has properties analogous to that of sum processes. 

The main difference is that now the high-energy limit is at [hω
j(q)] max ( in Equ. . (8.16) realized by the fact that the first 

term on the right-hand side has a maximum, and the second term has a minimum (equal to zero)).  

We illustrate in  the spectral regions of sum processes (2S) and of difference processes(2D), which, of course, 
are superposed in experiment (2S + 2D).  

  

In order to decide whether a certain peak in an experimental spectrum is due to a sum process or a difference process one 
can make use of the different temperature dependences of the two kinds of transitions: In case of type [b1] and [b2] 
transitions (Equ. (8.13b)) we are dealing with a collision of a photon with a phonon which is already present in the 
crystal. The frequency of such collisions is, of course, dependent upon the number of suitable "offered" phonons. This 
number tends to zero when approaching absolute zero temperature (Bose distribution, Equ. (7.18)), the same occurs with 
the intensity of the peaks due to difference processes. In contrast, type [a] (Equ. (8.13a)) sum processes can also take 
place at the lowest temperatures. Strictly speaking, the frequency of these processes also decreases on cooling; however, 

a considerable amount is left ( ). This temperature dependence of the sum processes can be explained by the fact 
that the "induced emission of phonons" occurs less frequently due to the decreased number of phonons, while the 
"spontaneous emission of phonons" is not affected by this trend.  

  

Multiphonon transitions can be studied in a most convenient way for nonpolar materials, because there is no interference 

by one-phonon processes. (In the case of polar materials, hω
TO(0) is usually located just within the two-phonon spectrum 

Fig. 8.7.) In  we show the absorption spectrum of Si due to multiphonon transitions, measured [27] at three 

temperatures. Here the absorption coefficient α is plotted against hω. In the case of Si [hωj(q)] max is about 63 meV; the  

corresponding limits of the two-phonon sum and difference region are included in the diagram. In addition, three-phonon 
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sum processes (3S) are observed here, which make a relatively great contribution for this material. As expected, a  

spectrum with appreciable structure is found, which, in the range considered, solely originates from sum processes. As 
the temperature is lowered, the light intensity decreases in the way expected.  

The structures were used to get information about phonon dispersion curves hω
j
(q). Thereby a certain model for the 

force constants was employed (dependence on nkα, range of action). Considering these quantities as fitting parameters, 

(hω
j(q) + hω

j'(q)) diagrams as Fig. 8.6 were obtained. By choosing the values of the force constants, line positions and 

line intensities could be described quantitatively. Hence, in this way it was possible to get reliable results on the phonon 
dispersion curves of Si, consistent with data from other methods of investigation (e. g. inelastic scattering of neutrons).  

It is apparent from the ordinate values in Fig. 8.9 that the absorption due to multphonon transitions is very weak 
(compared with the intensity of one-phonon peaks). Such spectra can be measured with adequate accuracy only if 
relatively thick samples of sufficient purity are available. A low impurity content is especially important, since impurities 
give rise to interfering contributions of comparable intensity in the relevant spectral region (e. g. transitions at impurity 
centers and intraband transitions). In this respect, Si is a positive example because of the highly developed crystal-growth 
technology for this material.  

8.4 Final Remarks 

In the present Chapter we have dealt with the basic aspects of spectra due to phonon transitions. It should be mentioned 
that phonon spectroscopy has also become an important tool for the characterization of materials. This concerns, in 
particular, analysing the composition and structure of mixed systems, and studies of "defect centers" giving rise to local 
modes and resonance modes .  

A most informative methodic variant which has not been discussed here is Raman spectroscopy. This method involves 
measuring a component of light scattering, in which the light frequency is changed due to the interaction between the 
electron system and the phonon system. In a future extension of this course the basic ideas of Raman spectroscopy will 
be included.  
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Appendix 1. Elementary Experimental Procedures 

In this Appendix we briefly consider simple arrangements for measuring spectra of upward and downward transitions. 
(For didactic reasons we have included part of this discussion in Section 2.2, where the connection between optical 
transitions and experimental quantities plays a role for the first time.) Upward transitions manifest themselves mainly in 
absorption and reflection spectra, while downward transitions make their appearance in luminescence spectra.  

For studying upward transitions (excitation transitions) one freqently uses a combination of transmission and reflection 

measurements; see .  

  

At each frequency ωωωω, to which the monochromator is tuned, the intensities transmitted and reflected by the sample, I
T
(ωωωω) 

and I
R

(ωωωω), respectively, are measured, and, in addition, in a "blank test", the incident intensity I
0
(ωωωω). Then one has, in 

simple cases (e. g. cubic symmetry, no interference effect)  

(A1.1)     T(ω) = ( 1 - R(ω) )2 e-α (ω)d 

 

T(ω) = I
T
(ω) / I0(ω) and R(ω) = I

R
(ω) / I0(ω) are referred to transmittivity and reflectivity, respectively; d is the sample 

thickness; α is the absorption coefficient (dimension cm-1), a quantity describing the attenuation of light per unit length.  

The absorption spectrum α(ω) can be determined, after correspondingly resolving Equ. (A1.1) , from the measured 

functions I
T
(ω), I

R
(ω) and I

0
(ω). Equ. (A1.1) shows that the accuracy with which α is determined critically depends on 

the sample thickness d. Optimum conditions are obtained if the product α d has a value about 1.  

(Because of the exponential d-dependence, the spectral variation of αhas hardly influence on T(ω) in the case of small d, 

while at large d-values T(ω), i. e. I
T

(ω), is too small to give reliable experimental results.)  

For many types of transitions (e. g. valence-band to conduction-band transitions, exciton transitions) one is dealing with 

α values of the order 104 to 106 cm-1. Hence, in these cases ideal conditions are met for sample thicknesses of the order 

10-5 cm = 100 nm. For many materials this can be realized by employing epitaxial layers. (Thereby the evaluation has to 
be done using expressions that are more complex than Equ. (A1.1) .)  

If such layers are not available, it is also possible to get information on upward transitions from reflection spectra R(ω) 
(see Appendix 3 and Appendix 4), which can also be obtained by means of the arrangement shown in Fig. A1. In these 
experiments one can also use thicker samples.  

The observation of luminescence spectra aiming at the investigation of downward transitions (deexcitation transitions) 
requires a supply of energy "from outside" ("excitation"). Depending on the type of energy supply, these measurements 
are referred to as studies of photo-, cathodo-, electrotroluminescence e. t. c. Here we only deal with photoluminescence, 

involving excitation by optical irradiation. The principle of the experimental arrangement is shown in  .  
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Generally the excitation leads to the emission of a whole spectrum of photon energies (totat intensity I
Etot

). Then the 

spectral decomposition is performed by the monochromator (emerging intensities I
E

(ωωωω)). The photon energy hωωωω
L

 of the 

laser employed for the excitation is chosen corresponding to the downward transition to be studied (usually hω
L > hω).  

Appendix 2. Material Parameters Describing the Effect of the 
Radiation Field 

As we know, radiation acting on a solid leads, under certain conditions, to upward transitions which manifest themselves 
in the absorption spectrum. However, there are further effects of such transitions noticable in other optical properties, 
such as refraction and reflection (see Appendix 4 for a physical discussion). Starting from Maxwell's equations, the 

overall reaction of the solid is described in terms of (ω dependent) material parameters [1].  

In solid state spectroscopy it is customary to work with two combinations of parameters (dimensionless quantities):  
� using a complex refractive index: 

(A2.1)     η(ω) = n(ω) + i κ(ω)  

(n normal refraction index, κ absorption index) or  
� using a complex dielectric function 

(A2.2)     ε(ω) = ε
1
(ω) + i ε

2
(ω). 

 

The two variants are connected through the relations  

(A2.3)     η2 = ε,     ε1 = n2 - κ2,     ε2 = 2nκ 

 

(limiting ourselves to the case of nonmagnetic materials and cubic symmetry).  

Of the optical phenomena determined by these parameters, the properties of upward transitions are reflected in the most 
direct way by the phenomenon of absorption. Hence, if possible, the latter effect is used for getting information on those 

transitions. In Appendix 1 we describe a procedure involving transmission measurements. The absorption coefficient α

(ω) determined in these measurements can be used to evaluate the absorption index by means of  

(A2.4)     α(ω) = 2 κ(ω) ω / c  

The physical relation between the parameters will be discussed in Appendix 4, on the basis of an oscillator model.  

Appendix 3. Evaluation of Reflection Spectra by Means of 
Kramers-Kronig Analysis  

In Appendix 1 we have illustrated how absorption spectra can be determined by means of transmission measurements. 
As we have mentioned, this procedure is applicable only if sufficiently thin samples are available. In the absence of such 
samples, the desired information can be obtained from pure reflection data using the method described in the following. 
That method can be applied in all cases in which the transitions of interest have a sufficiently strong effect on the 
reflection spectrum (e. g. valence-band to conduction-band transitions, exciton transitions).  
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In order to explain the procedure, we consider the reflection from a thick sample for normal incidence of radiation. In 
this case, the reflectivity is given by  

(A3.1)     R(ω) = [(n(ω) - 1)2 + κ(ω)2] / [(n(ω) + 1)2 + κ(ω)2]. 

 

Here n is the refractive index, κ the absorption index (Appendix 2). Hence, for each ω, the measurement of R yields only 

one combination of the two quantities n and κ. In principle, a second combination of n and κ can be obtained by 

measuring, in addition, the phase shift ψ appearing for reflection:  

(A3.2)     ψ(ω) = - 2κ(ω) / [n(ω)2 + κ(ω)2 - 1] 

 

Since measurements of phase shifts are relatively difficult and time-consuming, these are avoided by using a so-called 

Kramers-Kronig relation between R and ψ:  

  

Here P is the principal value of the integral. Equ. (A3.3) means that one has only to measure the quantity R, which is 

needed in any case ( Equ. (A3.1)) . However, a sufficiently large spectral range has to be covered. From this Equation, ψ

(ω) is obtained by numerical integration. Inserting the result into Equ. (A3.2), one has, together with Equ. (A3.1) , two 

equations for the two unknown quantities n and κ. If desired, one can get from these, with the aid of Equ. (A2.3) 

(Appendix 2), the real and imaginary part of the dielectric function ε(ω).  

Appendix 4. Optical Spectra in the Oscillator Model 

In this Appendix we shall discuss the response to the radiation field of a system having discrete energy levels, and the 
corresponding optical spectra. Examples are spectra in the exciton and phonon regions (Sections 5.2 and 8.2).  

Strictly speaking, in all these cases one is dealing with continuous energy spectra, in which, due to selection rules, only 
transitions into single levels are possible, see e. g. Fig. 5.3 in Chapter 5 (exciton transitions). Thus, in discussions of the 
optical behaviour, one can pretend to be concerned with discrete levels.  

The following point is of particular importance: Optical upward transitions, i. e. transitions with the absorption of 

radiation, can, of course, occur only if the photon energy hω coincides with the separation of the corresponding levels, 

∆E . However, there is also an effect of the radiation field in cases when hω somewhat deviates from ∆E (Fig. A3). In 
such cases the system remains in the ground state, but a field-induced "admixture" of states of the upper level (time-

dependent with the field frequency ω) occurs. One result is a time-dependent (electric and / or magnetic) polarization of 
the material [1].  

  

A system for which the situation can be discussed - and generalized later on - in a most simple manner, is the one-
dimensional harmonic oscillator. This system has only discrete energy levels. It is found that the optical behaviour comes 
out in an essentially correct way, if we consider the classical instead of the quantum mechanical oscillator. For easier 
illustration we begin with the classical case.  

Classical Oscillator 

Let us consider a classical oscillator with mass M, spring constant K, eigenfrequency (in the absence of attenuation) ω0 = 

(K/M)1/2 and charge Q, which performs forced vibrations under the influence of the electric field F = F
0
eiωt of an 

electromagnetic wave (F0 amplitude, ω frequency), see . Referring to the displacement at time t as u(t), we have 

the equation of motion  

(A4.1)     M u''(t) = -K u(t) + Q F0 eiωt - Mγ u'(t) 
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On the right-hand side, the first term is the restoring force, and the second term is the force due to the electric field. The 
third term describes the attenuation, which we assume, as usual, to be proportional to the first derivative with respect to 

the time, of the dicplacement. γ (> 0) is the so-called attenuation coefficient. For formal reasons, the quantity M is 
incorporated in the proportionality factor.  

It is well known that Equ. (A4.1) can be solved by putting u(t) = u0 ei(ωt + φ): The oscillations occur with the field 

frequency ω, and are phase-shifted relative to the field by the angle φ. u0 is the real amplitude. Calculation [28] yields  

(A4.2)     u0 = (Q F0/ M) / [(ω0
2 - ω2)2 + γ2 ω2]1/2 

 

(A4.3)     tg φ = - γ ω / (ω
0

2 - ω2) 

 

Let us now regard a system of oscillators of the same kind (N oscillators per unit volume). The reaction of this system to 
the field can be described by the complex dielectric function  

(A4.4)     ε (ω) = 1 + (4π Q2 N / M) [(ω0
2 - ω2) + i γ ω] / [(ω0

2 - ω2)2 + γ2 ω2] 

 

Application to Solids 

Surprisingly, the results can be applied, with minor modifications, to solid-state excitations of the kind mentioned earlier, 
although these have quantum-mechanical character, and their energy spectra substantially deviate from that of the 

harmonic oscillator: One has simply to identify ω0 with ∆E / h (Fig. A3) and to modify Equ. (A4.4) in the following way: 

� The prefactor of the second term in Equ. (A4.4), 4π Q2 N / M, is replaced by a new (calculable) quantity, which 
we shall call A.  

� We take into account that in the ω range around the excitation frequency ω0 there are generally other (higher-

frequency) excitations contributing to the real part of ε(ω) (a physical explanation will be given later). This effect 

is described by substituting the quantity "1" in Eq. (A4.4) by a real constant εoo (> 1)  

In this way we get:  

(A4.5)     ε (ω) = ε
oo

 + A [(ω
0

2 - ω2) + i γ ω] / [(ω
0
2 - ω2)2 + γ2 ω2] 

 

and, separately, for the real and the imaginary part:  

(A4.6)     ε1(ω) = εoo + A [(ω0
2 - ω2)] / [(ω0

2 - ω2)2 + γ2 ω2] 

 

(A4.7)     ε2(ω) = A γ ω / [(ω0
2 - ω2)2 + γ2 ω2] 

 

ε
2
 characterizes the absorption of radiation (transitions from the ground state to an excited state), ε

1
 describes the 

radiation-induced polarization of the solid-state system (admixture effect, discussed previously)  

The attenuation coefficient γ entering Equ. (A4.5) to (A4.7) characterizes the transfer of excitation energy to "oscillators" 
which do not interact directly with the radiation field (e. g. in the exciton case the energy transfer to states with nonzero 

K , see Section 5.2). In principle, such complicated processes lead to an ω dependence of γ, which, however, can be 
usually neglected.  

Optical Spectra in the Oscillator Interpretation 

In the following Fig. A5 we present the ω dependences of the relevant quantities for the set of parameters  

     ε
oo

 = 5, A / ω
0

2 = 1, γ / ω
0
 = 0.01 

 

We shall discuss these dependences in the classical oscillator picture.  

As to be expected, the amplitude of the oscillations u0 (Equ.(A4.2)) shows resonance behaviour (sharp peak at ω = ω0, 

see ). At frequencies well below ω0, the phase shift φ (Equ. (A4.3)) is practically zero. As the frequency 

increases, a delay gradually develops (φ smaller than zero). After passing the resonance, the oscillation rather abruptly  
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goes out of phase (φ = - π).  

The ω dependence of the optical quantities can be explained by taking into account the variation of u0 and φ: 

 

ε2(ω) (Gl. (A4.7)) describes , as visible in , an absorption line at ω0, corresponding, as to be expected, to the u0

(ω) curve. The magnitude of the quantity ε1(Equ.. (A4.6)), which is determined by the dielectric polarization, is found to 

increase when approaching the resonance frequency. The phase behaviour φ(ω) (Fig. A5a) is the reason why ε1 has 

positive values in the ω region below ω
0
, and , on passing ω

0
, jumps to negative values. (As ω grows, ε

1
 generally 

becomes positive again, due to the εoo term.)  

 shows the ω dependences of the refraction index n and of the absorption index κ (see Appendix 2), which are 
obtained by reversing Equ. (A2.3)  

(A4.8)     n = [(1/2)(ε1 + (ε1
2 + ε2

2)1/2]1/2 

 

(A4.9)     κ = [(1/2)( - ε1 + (ε1
2 + ε2

2)1/2]1/2 

 

from ε1(ω) and ε2(ω) . n(ω) is mainly determined by ε1(ω). At a greater distance from the ε2- absorption line one has 

approximately n(ω) = ε1(ω)1/2. Near ω0 the transition of ε1 to the negative region manifests itself by a jump of n to very 

small values. κ(ω) corresponds, as expected, to an absorption line at approximately ω0.  

Finally, making use of Gl. (A3.1), we get the ω dependence of the reflectivity R shown in   
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(A4.10)     R = [(n - 1)2 + κ2] / [(n + 1)2 + κ2] 

 

Outside the κ absorption line R is mainly determined by n. As ω0 is approached from small ω, R increases due to the 

growth of n.  

Beyond ω0 R nearly reaches unity (perfect reflection) . This originates from the small value that n assumes in this region. 

Later we have a steep drop to zero, afterwards R slowly increases again. The position of the steep edge approximately 

corresponds to the higher-energy zero of ε
1
(ω). The R value of zero is located near the point where n, during its rise, 

passes unity. The vanishing of the reflection is due to the fact that at this frequency the radiation practically does not feel 

the border between vacuum and the medium, because in both regions the refraction index (and also ε1) has the value 

unity.  

In cases where transmission studies are impossible, the pronounced structure in R(ω) enables one to obtain information 
on excitations of the type of interest from reflection measurements.  

The width of the structures under consideration (Fig. A5) strongly depends upon the parameter ratio γ / ω0, the structure 

becoming sharper as this ratio decreases.  

In conclusion, we shall deal with the reason for introducing the parameter εoo in Equ. (A4.5), referring to Fig. A5b: 

Passing through ω0 from high to low ω values we see that (according to Equ. (A4.6)) ε1 increases by A / ω0
2 in the 

horizontal regions. Physically, this is due to the fact that the oscillators can follow a field frequency well below ω0, but 

not a field frequency considerably above ω
0
. Hence, all other types of oscillators having eigenfrequencies higher than ω

0
 

contribute to the ε1 values of the considered oscillator, and this is taken into account by introducing the quantity εoo.  
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Supplement 1. Occupation of the Energy Bands with Electrons 

First we should note that only a finite number of electrons can be accommodated in each band ( ν ) of a crystal of finite 

size. This is because only a finite number of k vectors really correspond to Bloch states ψk ν
(r). These k vectors form a 

fine-mesh network with equidistant net points in the Brillouin zone. We illustrate this behaviour in our E
ν
(k) diagram 

(introduced in Fig. 1.4 ) (Fig. E1, see the magnifying-glass symbol on the k axis ). The total number of allowed k vectors 

is equal to the number of unit cells (Nc) in the crystal, i. e. of the order 1022 to 1023 in a macroscopic crystal.  

  

In most discussions one can ignore the discrete structure of k. However, this structure is significant when dealing with 
the occupation of the states with electrons. According to our earlier remarks, a maximum number of 2 Nc electrons can 

be accommodated in each band (ν) . The factor 2 results from the two possible directions of spin.  

Imagine that the electrons which are supplied by the atoms constituting the crystal are inserted in states with energies as 
low as possible. Following this procedure one finally arrives at a maximum energy (EM) of occupied states. EM 

approximately corresponds to the Fermi energy [3]. The position of this energy in the E
ν
(k) diagram determines the basic 

properties of the material in question. The most important cases that can occur are  

1. EM is located within a band 

 

2. E
M

 is located at the upper edge of a band, which is joined, without a gap, by further band states (contact or 

overlap of bands)  
3. EM is located at the upper edge of a band, which is followed by a gap  

In cases 1. and 2. we are dealing with metals, in case 3. with non-metals. The non-metals are usually subdivided, 
depending on the magnitude of E

g
 into semiconductors (Eg

 < 3 eV) and insulators(E
g 

> 3 eV), the dividing line being, of 

course, arbitrary from the physical point of view. In this sense, GaAs (with EM above the valence bands) is a non-metal 

or semicondoctor.  

One of the most significant differences between metals and non-metals is the magnitude of the electric conductivity: In 
the case of metals, an applied electric field can supply minimal portions of energy to the electrons near EM, and thus 

directly generate an electric current. In the non-metal case, such an energy transfer can occur only to a very limited 
extent, due to the existence of a forbidden gap.  

Supplement 2. Derivation of the k-Selection Rule 

In order to derive the k-selection rule Equ. (2.5) , we write the transition matrix element between Bloch states from Equ.. 
(2.4) in integral form, thereby omitting constant factors and taking into account that p is given by (h/i) grad in the 
position vector representation:  
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We extend this integral over a model crystal of macroscopic size, which, as indicated in  is thought to be cut from 

an infinite crystal and to contain only complete unit cells (range ΩΩΩΩ).  

  

(The integral has the character of a three-dimensional vector; note that in Equ. (2.2) one has a scalar product with the vector 

A0, whose direction is determined by the polarization direction of the radation.) 

Now we introduce by means of  

(E2.2)     r = rs
 + R 

 

a new integration variable rs (see ). R is a lattice vector; the index n has been omitted. We see from Fig. E2 that 

in Equ. (E2.2) we are simply concerned with a shift of the origin of coordinates from � to �. Taking into account the 
lattice periodicity of the u's and denoting the integrand in Equ. (E2.1) with I(r), we get  

  

The integral over rs has the same integrand as the originat integral. However, now the integration refers to a model 

crystal ΩΩΩΩs
 (Fig. E2), which is displaced relative to the original model crystal ΩΩΩΩ by R . Owing to the translation symmetry 

this displacement cannot affect the value of the integral. It follows that  

     ei ( -k' + s + k ) R = 1, 

 

and this leads to the conditions  

(E2.4)     ( -k' + s + k ) R = 2π × integer.  

Since this must be true for all R, this relation can be fulfilled only if -k' + s + k = 0. This corresponds to the selection 
rule Equ. (2.5). For other combinations of k', s and k, Equ. (E2.3) is valid only when the integrals are zero; in these cases 
the interband transition is forbidden. The crucial condition for getting this result is the translation symmetry of the 
system.  

Strictly speaking, the direct conclusion from Equ. (E2.4) is that k' + s + k is equal to a vector of the reciprocal lattice. 

However, this vector can be chosen to be zero, because Bloch states, in particular ψ
k'ν ', are periodic with respect to the 

reciprocal lattice. Since s is small, this also ensures that, together with k, k' lies in the Brillouin zone, as postulated (possibly 
except for a small k range near the zone boundary). 
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For a more rigorous derivation of the selection rule, see, e. g. [1].  

Supplement 3. Phonon Dispersion Curves of Materials with fcc 
Lattice 

In the following we compile some properties of the functions ωj(q) (phonon dispersion curves) for the materials with 

indirect band structure, mentioned in Section 2.3. A systematic treatment of the problems related to phonons will be 
given in Chapter 7.  

In discussions of the q dependence we can restrict ourselves, as in the case of the k dependence, to the Brillouin zone for 
the corresponding type of lattice . Si and Ge crystallize in the diamond structure, GaP in the zincblende structure. In all 
cases we are concerned with the Brillouin zone shown in Fig. 1.3.  

Representing the phonon dispersion curves for a substance with zincblende structure along a straight line in the Brillouin 

zone which passes q = 0 , we qualitativelyget the diagram shown in . There are six phonon bands (j = 1, . . , 6) ; 
three of them are so-called acoustic bands (two transverse (TA) and one longitudinal (LA)) and three so-called optical 

bands (also two transverse (TO) and one longitudinal (LO)). This picture refers to a high-symmetry direction (e. g. Γ - 
L). In such directions the TA and TO bands coincide to give one band of each type.  

 

The phonon energies relevant for the indirect transitions are obtained by checking the corresponding values at q = + km. 

 

Supplement 4. Development of Conduction-Band, Valence -
Band and Core States 

Let us describe - in an idealizing consideration - the qualitative changes in the wavefunctions which occur when atoms 
are put together to form a crystalline solid. For simplicity we refer to system with a single type of atoms, using a one-
dimensional picture. In Fig. E4a we first represent the situation for an isolated atom:  

 

We are dealing with an attractive potential U(x) (funnel-shaped in the simplest case) and - in the negative energy-range - 

with bound states having discrete energy-levels and localized wavefunctions φ(x), which is also illustrated in Fig. E4a 
(one-electron picture).  
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Now we show in Fig. E4b , how , when assembling the atoms, the individual potentials are superposed to give the total 
potential U(x). Due to the changes in the potential, the electrons, which were originally bound to separate atoms, are now 
able to tunnel from atom to atom ( ). In this process, the localized states develop into delocalized states (Bloch 
states, see Fig. 1.2) . This delocalization process is accompanied by the broadening of the (originally discrete) energy 

levels E (  ), i. e. by the formation of bands.  

Qualitatively these broadening effects can be explained by the familiar energy-time uncertainty relation  

  

Accordingly, the broadening (∆E ) increases with decreasing time (∆t) of dwelling in a given funnel. The dwelling time 
decreases with growing probability of tunnelling, i. e. when the potential barrier for the initial energy-level becomes 
lower and thinner. Consequently, broadening particularly occurs for higher atomic levels.  

Here we are mainly concerned with levels of valence electrons and non-occupied levels; these develop into valence 

bands and conduction bands, respectively. Deep atomic levels (core levels) continue to be sharp. In the latter case ∆t is so 
large that delocalization does not occur during the interaction with the radiation field. Hence the wavefunctions of the 
core states determining the oscillator strengths (transition probabilities) may be regarded as atomic wavefunctions (see 
Equ. (3.6)).  

Supplement 5. Exziton Wavefunctions 

The "correct" wavefunctions, which we will refer to as Ψ (re, rh), can be described by expressions containing Bloch 

functions. The Ψ(re, rh) include the spatial variations inside the unit cells, which is not the case for the functions Φ(re, 

rh
) and φ(re

 - rh
) used in the text (compare Equ. (5.7), (5.8) and (5.12)) .  

Let us illustrate this for the special case K = 0 (exciton at rest). In this case Ψ is given, to a good approximation, by the 

product of Φ with the Bloch functions corresponding to the edges of the respective bands:  

(E5.1)     Ψ (re, rh)
K = 0 = Φ (re, rh)

K = 0 ψ 
k=0, c (re) ψ 

k=0, v (rh) = V-1/2 φ(re - rh) ψ 
k=0, c (re) ψ 

k=0, v (rh). 

 

Here we have taken into account Equ. (5.7) and (5.8). We illustrate this in , where we present, in the lower part, 
the dependence on the electron coordinates re

 for a fixed position of the hole rh
 = 0, along a straight line passing through 

atoms of the same type. Here we have been guided, with respect to φ, by Equ. (5.12). For comparison we show, in the 

upper part of Fig. E5, the Bloch function ψ 
k=0, c (re) (being equal to the corresponding Bloch factor, see Fig. 1.2). 

Evidently, in Ψ the oscillation amplitudes, appearing in the atomic regions, diminish more and more, as the distance from 

the hole increases, which is due to the factor φφφφ. Because of the magnitude of a
exz

 ( Fig. 5.2), this decrease is a relatively 

slow process: The probability of finding the electron (proportional to |Ψ|2) is still significant for large distances from the 
hole.  
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φ(re - rh) is often referred to as envelope function; this is suggested by Fig. E5. 

 

Of course, an analogous situation is found for the rh
 dependence in the case of fixed re

. 

 

Supplement 6. Relation Between the K- and the k-Selection 
Rule 

In the case of optical transitions involving the creation or annihilation of electron-hole pairs, Equ. (5.16) is equivalent 
with the k selection rule in the simple way of consideration . In this case K should be composed additively of 
contributions of the electron and the hole:  

(E6.1)     K = ke + kh 

 

If the hole concept is defined correctly [1, 3], kh is equal to the negative k vector of the electron missing in the valence 

band (kv). Renaming ke = kc, we get from K = 0 and Equ. (E6.1) the old selection rule  

(E6.2)     kc = kv. 

 

Supplement 7. Molecular Beam Epitaxy (MBE) 

This is a method for producing layers or layer systems with crystalline structure.  

We explain the principle of this technique in Fig. E6, for the example of the elementary components Ga, Al, and As. We 
are dealing with an ultrahigh-vacuum system containing so-called effusion cells (Knudsen cells) for the evaporation of 
the components, and the so-called substrate, on which the layers are to be grown. Usually a massive crystalline material 
of similar composition and crystal structure is chosen as substrate material, in our example normally massive GaAs.  

 

The effusion cells are containers which are closed except for a very small hole opposite the substrate. On heating the cell, 
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a fine vapour beam ("molecular beam") of the corresponding element, which is directed toward the the substrate with the 
help of diaphragms, is emitted. The elementary material is condensed on the substrate, thereby reacting with the elements 
emerging from the other cells, thus forming the desired types of compound.  

By choosing the temperatures of the effusion cells one can adjust the evaporation rates (and, consequently, condensation 
rates) as desired, and, in particular, realize a slow, controlled kind of crystal growth. The establishment of low growth 
rates is very important for getting high crystallographic perfection (i. e. small concentrations of defects).  

The properties of the resultant layers are also dependent on the substrate temperature, which is usually about some 

hundred oC. The low growth-temperature, together with the ultra-high vacuum conditions, result in a degree of purity 
which is much better than that of crystals grown by classical techniques (usually occurring at temperatures about one 

thousand oC or higher).  

The composition of the layer material, in the present case the Ga-As mixing ratio (x-value), is generally controlled by 
varying the temperatures of the effusion cells. ( For producing the GaAs (x = 0) layer, the Al cell is blocked with a 
shutter.)  

Finally, the materials can be doped with impurity atoms by adding further effusion cells. This is frequently done to 
generate certain kinds and concentrations of current carriers, by incorporating donor or acceptor impurities (see e. g. the 
systems discussed in Sections 6.3 und 6.4 ).  

Supplement 8. States of Quantum Wells in the Case of Infinite 
Band-Offset 

In the case of an infinitely large offset U
0
, the function U

c
(z) (see Fig. 6.3) represents a square well potential with 

infinitely high walls. In this case we are concerned only with discrete energy levels. Consequently, the whole ε spectrum 

( Equ. (6.3) und (6.4)) is discrete. For these levels (εN) and the corresponding wavefunctions (χN(z)) one is then dealing 

with simple explicit expressions:  

(E8.1)     εN = (h2/2mc*(A)) (π / d)2 N2            N = 1,2,.... 

 

(E8.2)     χN(z) = C cos(Nπz / d)            for N = 1,3,5,.... 

 

               χN(z) = C sin(Nπz / d)             for N = 2,4,6,.... 

 

  

C is a normalization constant. The two Equ. (E8.2) refer to the A region (|z| < d/2). In the B region (|z| > d/2) χN(z) is 

zero, because the walls of the well are infinitely high (compare Fig. E7); as a consequence, εN (Equ. (E8.1)) is 

determined only by the effective mass of the A region mc*(A) (rather than by an average of the masses in the regions A 

and B as in the general case). The confinement energy is given by  

(E8.3)     ε1 = (h2/2mc*(A)) (π / d)2 

 

For not too small U0 values, Equ. (E8.3) is frequently used as an approximation. The same is true for Equ. (E8.1) and 

(E8.2) in the case of the lowest εN levels.  
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Supplement 9. Dynamical Matrix 

In the following we show that the expression  

  

appearing in Equ. (7.8) is independent of the cell index n.  

First we will prove that the whole summand depends on the indexes n and n' only through the difference of the lattice 
vectors Rn' - Rn. For the exponential factor this corresponds to the dependence which appears explicitly.  

For the first factor in the sum this result is obtained taking into account the fact that the φ's are forces (in the case of unit 
displacements) (see Equ. (7.3)).  

We consider in  two pairs of atoms, A / B und C / D, having the same combination of the indexes k and k' and the 
same difference of lattice vectors Rn

 - Rn'
. As a consequence of translation symmetry the force acting on atom A due to a 

displacement of atom B must be equal to the force acting on atom C for the same displacement of atom D. That means 

that the φ's also depend on n and n' only via the difference of lattice vectors quoted earlier.  

 

The n' summation is performed over the positions of all unit cells relative to a certain unit cell n. Because of translation 
symmetry ( and the finite action range of the forces) , it is not important, for a sufficiently large crystal, how the 
reference vector Rn is chosen.  

Consequently, the dynamical matrix defined in Equ. (7.8) is, in fact, only dependent on the indexes k, α, k', and α'.  

Supplement 10. Limitation of the Phonon Lifetime by 
Anharmonic Interaction 

In the harmonic approximation (Equ. (7.1)) used in the previous chapters terms of higher than second order in the atomic 
displacements are omitted. As a consequence, the system of vibrating atoms is characterized by fixed phonon-numbers l

qj

(see Section 7.3). Hence, this discussion leads to an infinitely large lifetime of the phonons. Finite lifetimes are obtained, 

only if allowance is made for higher-order tems in the potential energy Φ, so-called anharmonic terms. Here we restrict 

ourselves to additional third-order terms, assuming as earlier Φ(0) = 0:  

(E10.1)      Φ = { u u' } + { u u' u'' }  

Making use of the linear coordinate-transformations described in Sections 7.2 and 7.3, one then obtains additional third-
order terms in the Hamilton operator (see Equ. (7.21)) :  
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(The { } symbols have an analogous meaning as those used in Section 8.1). Assuming that the system is initially in an 
eigenstate |....., l

q j,.....> and that then Hanh is "switched on", processes due to the two Hanh terms explicitly given in Equ. 

(E10.2) occur, in which  

(a) one phonon decays into two (smaller) phonons: , or 

 

(b) two phonons combine into a new (larger) phonon: . 

 

The terms that are not explicitly given in Equ. (E10.2) ( combinations of three creation and three destruction operators) 
do not result in such processes, because in these cases the energy balance would be violated.  

The lifetime broadening of the one-phonon absorption line mainly originates from the fact that the TO phonon generated 
optically is subject to type (a) and (b) processes:  

  

(Here we have represented the photon in each case by .) Obviously, the frequency of type (b) processes grows with 

increasing supply of partner phonons ( ), i. e. with increasing temperature. This leads to a growth of linewidth 
occurring in this direction.  

By the way, the anharmonic contributions to the potential energy of atoms are also important for fundamental properties of 
solids, such as thermal expansion and thermal conductivity.  
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